Topic/Skill	Definition/Tips	Example	
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3x + 2 \text{ or } 5y^2$	
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15	
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$	
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW	
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 3x + 4 - x2 + 2x - 1 = 5x - x2 + 3	
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.	
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not $2x3=6$	
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$	
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21	
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	6x - 15 = 3(2x - 5), where 3 is the common factor.	

The mean

The mean is a type of average. To find the mean, add up all the numbers and divide by how many there are. E.g. the mean of 4, 5, 3, 4 is 4. (Because 4 + 5 + 3 + 4 = 16, and $16 \div 4 = 4$)

YEAR 7 MATHS KNOWLEDGE **ORGANISER**

2D shapes

No. of sides	
4	
5	
6	
7	
8	
9	
10	

polygon = shape with straight sides regular = all sides/angles the same irregular = sides/angles not same

Types of triangle

Types of quadrilateral

AREA

is the amount of space inside a 2D shape usually measured in cm² or m².

Area of a triangle

= (base x height) \div 2

Area of a parallelogram

= base x height (Height = perpendicular height)

Multiplication and division vocabulary

Term	Definition	Example	
factor	a number that divides exactly	factors of 12 =	
Tactor	into another number	1, 2, 3, 4, 6, 12	
common	factors of two numbers that	common factors of 8 and	
factor	are the same	12 = 1, 2, 4	
prime	a number with only 2 factors:	2, 3, 5, 7, 11, 13, 17, 19	
number	1 and itself		
composite	a number with more than	12	
number	two factors	(it has 6 factors)	
nrima factor	a factor that is primo	prime factors of 12 =	
prime factor	a factor that is prime	2, 3	
multiple	a number in another	multiples of 9 =	
	number's times table	9, 18, 27, 36	
common	multiples of two numbers	common multiples of 4	
multiple	that are the same	and 6 = 12, 24	
square	the result when a number	$25 (5^2 = 5x5)$	
numbers	has been multiplied by itself	$49 (7^2 = 7x7)$	
cube	the result when a number has	$8(2^3 = 2x2x2)$	
numbers	been multiplied by itself 3 times	$27 (3^3 = 3x3x3)$	

Angles

360°
180°
90°
< 90°
> 90°
>180°
180°
180°
360°

Fractions, decimals & percentages

1/100	0.01	1%	÷ 100
1/20	0.05	5%	÷ 20
1/10	0.1	10%	÷ 10
1/5	0.2	20%	÷ 5
1/4	0.25	25%	÷ 4
1/2	0.5	50%	÷ 2
3/4	0.75	75%	÷ 4, x3
1	1	100%	÷ 1

Bar Charts

Represents data as vertical blocks.

x - axis shows the type of data

y - axis shows the frequency for each type of data Each bar should be the same width There should be **gaps** between each bar

Remember to label each axis.

