Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3 \mathrm{x}+2$ or $5 \mathrm{y}^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: =	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle $=$ length x width or $\mathrm{A}=$ LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms.	$\begin{aligned} & 2 x+3 y+4 x-5 y \\ & +3=6 x-2 y+3 \\ & 3 x+4-x^{2}+2 x \\ & -1=5 x-x^{2}+3 \end{aligned}$
6. x times x	The answer is x^{2} not $2 x$.	Squaring is multiplying by itself, not by 2 .
7. $p \times p \times p$	The answer is p^{3} not $3 p$	$\begin{aligned} & \text { If } \mathrm{p}=2 \text {, then } \\ & p^{3}=2 \times 2 \times 2=8, \text { not } \\ & 2 \times 3=6 \end{aligned}$
8. $p+p+p$	The answer is 3 p not p^{3}	If $\mathrm{p}=2$, then $2+2+2=6$, not $2^{3}=8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	$3(m+7)=3 x+21$
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	$6 x-15=3(2 x-$ 5), where 3 is the common factor.

The mean

The mean is a type of average. To find the mean, add up all the numbers and divide by how many there are. E.g. the mean of 4 , $5,3,4$ is 4 . (Because $4+5+3+4=16$, and $16 \div 4=4$)

YEAR 7 MATHS KNOWLEDGE ORGANISER

2D shapes

Name	No. of sides
quadrilateral	4
pentagon	5
hexagon	6
heptagon	7
octagon	8
nonagon	9
decagon	10

polygon = shape with straight sides regular = all sides/angles the same irregular = sides/angles not same

Types of triangle

parallelogram trapezium rhombus

AREA

is the amount of space inside a 2D shape usually measured in cm^{2} or m^{2}.

Area of a triangle
$=$ (base x height) $\div 2$

Area of a parallelogram

 $=$ base \times height(Height $=$ perpendicular height $)$

Multiplication and division vocabulary		
Term	Definition	Example
factor	a number that divides exactly into another number	factors of $12=$ $1,2,3,4,6,12$
common factor	factors of two numbers that are the same	common factors of 8 and $12=1,2,4$
prime number	a number with only 2 factors: 1 and itself	$2,3,5,7,11,13,17,19 .$.
composite number	a number with more than two factors	12 (it has 6 factors)
prime factor	a factor that is prime	prime factors of $12=$ 2, 3
multiple	a number in another number's times table	multiples of $9=$ 9, 18, 27, 36...
common multiple	multiples of two numbers that are the same	common multiples of 4 and $6=12,24 \ldots$
square numbers	the result when a number has been multiplied by itself	$\begin{aligned} & 25\left(5^{2}=5 \times 5\right) \\ & 49\left(7^{2}=7 \times 7\right) \end{aligned}$
cube numbers	the result when a number has been multiplied by itself 3 times	$\begin{gathered} 8\left(2^{3}=2 \times 2 \times 2\right) \\ 27\left(3^{3}=3 \times 3 \times 3\right) \end{gathered}$

| Angles |
| :---: | :---: |
| full turn 360°
 half turn 180°
 right angle 90°
 acute angle $<90^{\circ}$
 obtuse angle $>90^{\circ}$
 reflex angle $>180^{\circ}$
 angles on a straight line 180°
 angles inside a triangle 180°
 angles inside a quadrilateral 360° |

Fractions, decimals \& percentages

$1 / 100$	0.01	1%	$\div 100$
$1 / 20$	0.05	5%	$\div 20$
$1 / 10$	0.1	10%	$\div 10$
$1 / 5$	0.2	20%	$\div 5$
$1 / 4$	0.25	25%	$\div 4$
$1 / 2$	0.5	50%	$\div 2$
$3 / 4$	0.75	75%	$\div 4, \times 3$
1	1	100%	$\div 1$

Bar Charts

Represents data as vertical blocks.
$\boldsymbol{x}-\boldsymbol{a x i s}$ shows the type of data
\boldsymbol{y} - axis shows the frequency for each type of data
Each bar should be the same width
There should be gaps between each bar
Remember to label each axis.

