Algebra	Definition/Tips	Example	Perimeter/	Definition/Tins	Example
1. Expression	A mathematical statement	$3x + 2$ or $5y^2$	Area	Definition/ Tips	Example
1	written using symbols ,	, , , , , , , , , , , , , , , , , , ,	1. Perimeter	The total distance around the outside of	8 cm
	numbers or letters,			a shape.Units include: mm, cm, m etc.	
2. Equation	A statement showing that two	2y - 17 = 15			5 am
1	expressions are equal	- -			5 Cm
3. Identity	An equation that is true for all	$2x \equiv x + x$			
2	values of the variables				P = 8 + 5 + 8 + 5 = 26cm
			2. Area	The amount of space inside a shape.	
	An identity uses the symbol: \equiv			Units include: mm^2 , cm^2 , m^2	
4. Formula	Shows the relationship	Area of a rectangle =			
	between two or more	length x width or $A = LxW$			
	variables				
5.	Collect 'like terms'.	2x + 3y + 4x - 5y + 3	3 Area of a	Length x Width	9 cm
Simplifying		= 6x - 2y	Rectangle		
Expressions	Be careful with negatives.	+ 3	C C		4 cm
	x^2 and x are not like terms.	$3x + 4 - x^2 + 2x - 1$			
		$= 5x - x^2$			$A = 36cm^2$
		+ 3	4. Area of a	Base x Perpendicular Height	
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by	Parallelogram	Not the slant height.	4cm 3cm
		itself, not by 2.			
7. $p \times p \times p$	The answer is p^3 not $3p$	If $p=2$, then $p^3=2x^2x^2=8$,			Zcm
		not 2x3=6			$A = 21cm^2$
8. $p + p + p$	The answer is 3p not p^3	If p=2, then 2+2+2=6, not	5. Area of a	Base x Height ÷ 2	
		$2^3 = 8$	Triangle		$\frac{9}{4}$
9. Expand	To expand a bracket, multiply	3(m+7) = 3m+21			
	each term in the bracket by				12
	the expression outside the				$A = 24cm^2$
	bracket.			1	11 - 1011
10. Factorise	The reverse of expanding.	6x - 15 = 3(2x - 5),			
	Factorising is writing an	where 3 is the common			
	expression as a product of	factor.			
	terms by 'taking out' a				
	common factor.				

Multiplication Index Law	When multiplying with the same base (number or letter), add the powers . $a^m \times a^n = a^{m+n}$	$7^{5} \times 7^{3} = 7^{8}$ $a^{12} \times a = a^{13}$ $4x^{5} \times 2x^{8} = 8x^{13}$	Fraction A mathematical expression representing the division of one integer by another	Linear Sequence: A number pa common difference. 2, 5, 8, 11 is a linear sequence
Division Index	When dividing with the same	$15^7 \div 15^4 = 15^3$	Fractions are written as two	Term: Each value in a sequence
Law	base (number or letter), subtract	$ \begin{array}{l} x^{9} \div x^{2} = x^{7} \\ 20a^{11} \div 5a^{3} = 4a^{8} \end{array} $	numbers separated by a horizontal line.	In the sequence $2, 5, 8, 11, 8$
	the powers. $a^m \div a^n = a^{m-n}$			Torre to torre mile: A mile which
				find the next term in a sequence
Brackets Index	When raising a power to another	$(y^2)^5 = y^{10}$	YEAR 8 MATHS	nu the next term in a sequent
Laws	power, multiply the powers	$(6^3)^4 = 6^{12}$		previous term.
	together. $(a^m)^n = a^{mn}$	$(5x^6)^3 = 125x^{18}$	KNOWLEDGE	First term is 2. Term-to-term rule
Notable Powers	$p = p^1$	$99999^0 = 1$	ORGANISER	Sequence IS: 2, 5, 8, 11
	$n^{0} = 1$		ONGANISEN	nth term: A rule which allows you
	r –			term that is in the nth position of

Rounding: To make a number simpler but keep its value close to what it was.

If the **digit to the right** of the rounding digit is **less than 5, round down**. If the **digit to the right** of the rounding digit is **5 or more, round up**. 74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80. 152,879 rounded to the nearest thousand is 153,000.

Decimal Place: The position of a digit to the right of a decimal point. In the number 0.372, the 7 is in the second decimal place.

0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down.

Careful with money - don't write £27.4, instead write £27.40 **Significant Figure:** The significant figures of a number are the digits which **carry meaning** (ie. are significant) to the size of the number. The **first significant figure** of a number **cannot be zero**.

In a number with a decimal, trailing zeros are not significant. In the number 0.00821, the first significant figure is the 8. In the number 2.740, the 0 is not a significant figure.

0.00821 rounded to 2 significant figures is 0.0082.

19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.

BIDMAS

An acronym for the **order** you should do calculations in. BIDMAS stands for 'Brackets. Indices, Division, Multiplication, Addition and Subtraction'. Indices are also known as 'powers' or 'orders'. $6 + 3 \times 5 = 21$ not 45 $5^2 = 25$, where the 2 is the index/power $12 \div 4 \div 2 = 1.5$, not 6

ttern with a

e ce is called a term. is the third term of

h allows you to ce if you **know the**

is 'add 3'

to calculate the the sequence. Also known as the 'position-to-term' rule. **n** refers to the **position** of a term in a sequence. nth term is 3n - 1

The 100th term is $3 \times 100 - 1 = 299$

Finding the nth term of a linear sequence:

1. Find the **difference**.

2. Multiply that by *n*.

3. Substitute n = 1 to find out what number you need to add or subtract to get the first number in the sequence. Find the nth term of: 3, 7, 11, 15...

1. Difference is +4

2. Start with 4n

3. $4 \times 1 = 4$, so we need to subtract 1 to get 3.

nth term = 4n - 1

Integer

A whole number that can be positive, negative or zero.

-3.0.92

Decimal

A number with a **decimal point** in it. Can be positive or negative.

3.7, 0.94, -24.07

Negative Number

A number that is **less than zero**. Can be decimals.

-8. -2.5