Algebra	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3 x+2$ or $5 y^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle $=$ length x width or $\mathrm{A}=\mathrm{LxW}$
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms.	$\begin{aligned} \hline 2 x+3 y+4 x & -5 y+3 \\ & =6 x-2 y \\ & +3 \\ 3 x+4-x^{2}+ & 2 x-1 \\ & =5 x-x^{2} \\ & +3 \end{aligned}$
6. x times x	The answer is x^{2} not $2 x$.	Squaring is multiplying by itself, not by 2 .
7. $p \times p \times p$	The answer is p^{3} not $3 p$	If $\mathrm{p}=2$, then $p^{3}=2 \times 2 \times 2=8$, not $2 \times 3=6$
8. $p+p+p$	The answer is 3 p not p^{3}	If $p=2$, then $2+2+2=6$, not $2^{3}=8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	$3(m+7)=3 m+21$
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	$6 x-15=3(2 x-5)$ where 3 is the common factor.

Perimeter/ Area	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape.Units include: $m m, c m, m$ etc.	
2. Area	The amount of space inside a shape. Units include: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$	
3. Area of a Rectangle	Length x Width	
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	
5. Area of a Triangle	Base x Height $\div 2$	

Multiplication	When multiplying with the same Index Law base (number or letter), add the powers. $\boldsymbol{a}^{\boldsymbol{m}} \times \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}+\boldsymbol{n}}$	$7^{5} \times 7^{3}=7^{8}$ $a^{12} \times a=a^{13}$ $4 x^{5} \times 2 x^{8}=8 x^{13}$
Division Index Law	When dividing with the same base (number or letter), subtract the powers. $\boldsymbol{a}^{\boldsymbol{m}} \div \boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}-\boldsymbol{n}}$	$15^{7} \div 15^{4}=15^{3}$ $x^{9} \div x^{2}=x^{7}$ $20 a^{11} \div 5 a^{3}=4 a^{8}$
Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(\boldsymbol{a}^{\boldsymbol{m}}\right)^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m} \boldsymbol{n}}$	$\left(y^{2}\right)^{5}=y^{10}$ $\left(6^{3}\right)^{4}=6^{12}$ $\left(5 x^{6}\right)^{3}=125 x^{18}$
Notable Powers	$\boldsymbol{p}=\boldsymbol{p}^{\mathbf{1}}$ $\boldsymbol{p}^{\mathbf{0}}=\mathbf{1}$	$99999^{0}=1$

Fraction

A mathematical expression representing the division of one integer by another. Fractions are written as two numbers separated by a horizontal line.

YEAR 8 MATHS KNOWLEDGE ORGANISER

Rounding: To make a number simpler but keep its value close to what it was.
If the digit to the right of the rounding digit is less than 5 , round down. If the digit to the right of the rounding digit is 5 or more, round up. 74 rounded to the nearest ten is 70 , because 74 is closer to 70 than 80 . 152,879 rounded to the nearest thousand is 153,000 .
Decimal Place: The position of a digit to the right of a decimal point. In the number 0.372 , the 7 is in the second decimal place.
0.372 rounded to two decimal places is 0.37 , because the 2 tells us to round down.
Careful with money - don’t write $£ 27.4$, instead write $£ 27.40$ Significant Figure: The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number. The first significant figure of a number cannot be zero.
In a number with a decimal, trailing zeros are not significant. In the number 0.00821 , the first significant figure is the 8. In the number 2.740, the 0 is not a significant figure. 0.00821 rounded to 2 significant figures is 0.0082 .

19357 rounded to 3 significant figures is 19400 . We need to include the two zeros at the end to keep the digits in the same place value columns.

BIDMAS

An acronym for the order you should do calculations in. BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.
Indices are also known as 'powers' or 'orders'.
$6+3 \times 5=21$, not 45
$5^{2}=25$, where the 2 is the
index/power
$12 \div 4 \div 2=1.5$, not 6

Linear Sequence: A number pattern with a common difference.
$2,5,8,11 \ldots$ is a linear sequence
Term: Each value in a sequence is called a term. In the sequence $2,5,8,11 \ldots, 8$ is the third term of the sequence.
Term-to-term rule: A rule which allows you to
find the next term in a sequence if you know the previous term.
First term is 2 . Term-to-term rule is 'add 3 ' Sequence is: $2,5,8,11 \ldots$
nth term: A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence. nth term is $3 n-1$
The $100^{\text {th }}$ term is $3 \times 100-1=299$
Finding the nth term of a linear sequence:

1. Find the difference.

2. Multiply that by n.

3. Substitute $n=1$ to find out what number you need to add or subtract to get the first number in the sequence.
Find the nth term of: $3,7,11,15$...
4. Difference is +4
5. Start with $4 n$
6. $4 \times 1=4$, so we need to subtract 1 to get 3 .
nth term $=4 n-1$

Integer

A whole number that can be positive, negative or zero.

$$
\begin{aligned}
& -3,0,92 \\
& \text { Decimal }
\end{aligned}
$$

A number with a decimal point in it. Can be positive or negative.
3.7, 0.94, - 24.07

Negative Number
A number that is less than zero. Can be decimals.

$$
-8,-2.5
$$

