Note : You will be sit for baseline assessment during your first Maths lesson
Baseline assessment - 1 hour and will be tested from your bridging work

Expanding brackets and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form $a x+b$, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand $4(3 x-2)$

$$
\begin{array}{l|l}
4(3 x-2)=12 x-8 & \text { Multiply everything inside the bracket }
\end{array}
$$ by the 4 outside the bracket

Example 2 Expand and simplify $3(x+5)-4(2 x+3)$

$$
\begin{aligned}
& 3(x+5)-4(2 x+3) \\
& \quad=3 x+15-8 x-12 \\
& \quad=3-5 x
\end{aligned}
$$

1 Expand each set of brackets separately by multiplying $(x+5)$ by 3 and $(2 x+3)$ by -4

2 Simplify by collecting like terms: $3 x-8 x=-5 x$ and $15-12=3$

Example 3 Expand and simplify $(x+3)(x+2)$

$$
\begin{aligned}
(x+3) & (x+2) \\
& =x(x+2)+3(x+2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

1 Expand the brackets by multiplying $(x+2)$ by x and $(x+2)$ by 3

2 Simplify by collecting like terms: $2 x+3 x=5 x$

Example 4 Expand and simplify $(x-5)(2 x+3)$

$$
\begin{aligned}
& (x-5)(2 x+3) \\
& \quad=x(2 x+3)-5(2 x+3)
\end{aligned}
$$

1 Expand the brackets by multiplying $(2 x+3)$ by x and $(2 x+3)$ by -5

$$
\begin{aligned}
& =2 x^{2}+3 x-10 x-15 \\
& =2 x^{2}-7 x-15
\end{aligned}
$$

2 Simplify by collecting like terms:
$3 x-10 x=-7 x$

Practice

1 Expand.
a $3(2 x-1)$
b $\quad-2\left(5 p q+4 q^{2}\right)$
c $\quad-\left(3 x y-2 y^{2}\right)$

2 Expand and simplify.
a $\quad 7(3 x+5)+6(2 x-8)$
b $8(5 p-2)-3(4 p+9)$
c $\quad 9(3 s+1)-5(6 s-10)$
d $2(4 x-3)-(3 x+5)$

Watch out!

When multiplying (or dividing) positive and negative numbers, if the signs are the same the answer is ' + '; if the signs are different the answer is ' - '.

3 Expand.
a $\quad 3 x(4 x+8)$
b $\quad 4 k\left(5 k^{2}-12\right)$
c $\quad-2 h\left(6 h^{2}+11 h-5\right)$
d $-3 s\left(4 s^{2}-7 s+2\right)$

4 Expand and simplify.
a $3\left(y^{2}-8\right)-4\left(y^{2}-5\right)$
b $\quad 2 x(x+5)+3 x(x-7)$
c $\quad 4 p(2 p-1)-3 p(5 p-2)$
d $3 b(4 b-3)-b(6 b-9)$

5 Expand $\frac{1}{2}(2 y-8)$

6 Expand and simplify.
a $\quad 13-2(m+7)$
b $\quad 5 p\left(p^{2}+6 p\right)-9 p(2 p-3)$

7 The diagram shows a rectangle.
Write down an expression, in terms of x, for the area of the rectangle.
Show that the area of the rectangle can be written as

$7 x$

8 Expand and simplify.
a $\quad(x+4)(x+5)$
b $\quad(x+7)(x+3)$
c $\quad(x+7)(x-2)$
d $(x+5)(x-5)$
e $\quad(2 x+3)(x-1)$
f $(3 x-2)(2 x+1)$
g $\quad(5 x-3)(2 x-5)$
h $(3 x-2)(7+4 x)$
i $\quad(3 x+4 y)(5 y+6 x)$
j $\quad(x+5)^{2}$
k $(2 x-7)^{2}$
l $(4 x-3 y)^{2}$

Extend

9 Expand and simplify $(x+3)^{2}+(x-4)^{2}$

10 Expand and simplify.
a $\quad\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$
b $\left(x+\frac{1}{x}\right)^{2}$

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number,
for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50}=\sqrt{25 \times 2}$	$\mathbf{1}$Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	
$=5 \times \sqrt{2}$	
$=5 \sqrt{2}$	$\mathbf{2}$Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ $\mathbf{3}$ Use $\sqrt{25}=5$

Example 2 Simplify $\sqrt{147}-2 \sqrt{12}$

$$
\begin{aligned}
& \sqrt{147}-2 \sqrt{12} \\
& =\sqrt{49 \times 3}-2 \sqrt{4 \times 3} \\
& =\sqrt{49} \times \sqrt{3}-2 \sqrt{4} \times \sqrt{3} \\
& =7 \times \sqrt{3}-2 \times 2 \times \sqrt{3} \\
& =7 \sqrt{3}-4 \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

1 Simplify $\sqrt{147}$ and $2 \sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number

2 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{49}=7$ and $\sqrt{4}=2$

4 Collect like terms

Example 3 Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$

| $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$ |
| :--- | :--- |
| $=\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4}$ |\quad| 1Expand the brackets. A common
 $=7-2$
 $=5$ |
| :--- |
| mistake here is to write $(\sqrt{7})^{2}=49$ |
| Collect like terms:
 $-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}$
 $=-\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0$ |

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{1 \times \sqrt{3}}{\sqrt{9}} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use $\sqrt{9}=3$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$
\begin{aligned}
\frac{\sqrt{2}}{\sqrt{12}} & =\frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} \\
& =\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12} \\
& =\frac{2 \sqrt{2} \sqrt{3}}{12} \\
& =\frac{\sqrt{2} \sqrt{3}}{6}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{12}$

2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12 . One of the factors must be a square number

3 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4}=2$
5 Simplify the fraction:
$\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$\frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	$\mathbf{1}$Multiply the numerator and denominator by $2-\sqrt{5}$
$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	$\mathbf{2}$Expand the brackets
$=\frac{6-3 \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-5}$	$\mathbf{3}$Simplify the fraction
$=\frac{6-3 \sqrt{5}}{-1}$	$\mathbf{4}$Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1
$=3 \sqrt{5}-6$	

Practice

1 Simplify.
a $\sqrt{45}$
b $\sqrt{125}$
c $\sqrt{48}$
d $\sqrt{175}$
e $\sqrt{300}$
f $\sqrt{28}$
g $\sqrt{72}$
h $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

2 Simplify.
a $\quad \sqrt{72}+\sqrt{162}$
b $\sqrt{45}-2 \sqrt{5}$
c $\sqrt{50}-\sqrt{8}$
d $\sqrt{75}-\sqrt{48}$
e $2 \sqrt{28}+\sqrt{28}$
f $2 \sqrt{12}-\sqrt{12}+\sqrt{27}$

Watch out!

Check you have chosen the highest square number at the start.

3 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$

7 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $\quad a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $\quad a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10^{0}

$$
10^{0}=1
$$

Any value raised to the power of zero is equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}}$ $=$ $=3$	Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$

Example 3 Evaluate $27^{\frac{2}{3}}$

$27^{\frac{2}{3}}$	$=(\sqrt[3]{27})^{2}$			
	$=3^{2}$			
	$=9$	\quad	$\mathbf{1}$ Use the rule $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$	
:---	:---			
2	Use $\sqrt[3]{27}=3$			

Example 4 Evaluate 4^{-2}

$$
\begin{array}{rl|l}
4^{-2} & =\frac{1}{4^{2}} & \mathbf{1} \text { Use the rule } a^{-m}=\frac{1}{a^{m}} \\
& =\frac{1}{16} & \mathbf{2} \text { Use } 4^{2}=16
\end{array}
$$

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$\frac{6 x^{5}}{2 x^{2}}=3 x^{3}$	$6 \div 2=3$ and use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$\frac{x^{3} \times x^{5}}{x^{4}}=\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}}$	
$=x^{8-4}=x^{4}$	$\mathbf{1}$ Use the rule $a^{m} \times a^{n}=a^{m+n}$

Example 7 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example $8 \quad$ Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}}$	$=\frac{4}{x^{\frac{1}{2}}}$		
	$=4 x^{-\frac{1}{2}}$	\quad	$\mathbf{1}$ Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$
:---			
2			

Practice

1 Evaluate.
a 14^{0}
b $\quad 3^{0}$
c $\quad 5^{0}$
d x^{0}

2 Evaluate.
a $49^{\frac{1}{2}}$
b $64^{\frac{1}{3}}$
c $\quad 125^{\frac{1}{3}}$
d $16^{\frac{1}{4}}$

3 Evaluate.
a $25^{\frac{3}{2}}$
b $\quad 8^{\frac{5}{3}}$
c $\quad 49^{\frac{3}{2}}$
d $16^{\frac{3}{4}}$

4 Evaluate.
a 5^{-2}
b 4^{-3}
c $\quad 2^{-5}$
d 6^{-2}

5 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
$\operatorname{g} \frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!

Remember that any value raised to the power of zero is 1 . This is the rule $a^{0}=1$.

6 Evaluate.
a $4^{-\frac{1}{2}}$
b $27^{-\frac{2}{3}}$
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
d $16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

7 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

8 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
c $x^{\frac{1}{5}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $5 \sqrt{x}$
b $\frac{2}{x^{3}}$
c $\quad \frac{1}{3 x^{4}}$
d $\frac{2}{\sqrt{x}}$
e $\quad \frac{4}{\sqrt[3]{x}}$
f 3

Extend

10 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x+\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $a x^{2}+b x+c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is $a c$.
- An expression in the form $x^{2}-y^{2}$ is called the difference of two squares. It factorises to $(x-y)(x+y)$.

Examples

Example 1 Factorise $15 x^{2} y^{3}+9 x^{4} y$

$$
15 x^{2} y^{3}+9 x^{4} y=3 x^{2} y\left(5 y^{2}+3 x^{2}\right)
$$

The highest common factor is $3 x^{2} y$.
So take $3 x^{2} y$ outside the brackets and then divide each term by $3 x^{2} y$ to find the terms in the brackets

Example 2 Factorise $4 x^{2}-25 y^{2}$

$$
\begin{array}{l|l}
4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y) & \begin{array}{l}
\text { This is the difference of two squares as } \\
\text { the two terms can be written as } \\
(2 x)^{2} \text { and }(5 y)^{2}
\end{array}
\end{array}
$$

Example 3 Factorise $x^{2}+3 x-10$

$$
\begin{aligned}
& b=3, a c=-10 \\
& \text { So } \begin{aligned}
x^{2}+3 x-10 & =x^{2}+5 x-2 x-10 \\
& =x(x+5)-2(x+5) \\
& =(x+5)(x-2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-10$ which add to give $b=3$ (5 and -2)
2 Rewrite the b term ($3 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(x+5)$ is a factor of both terms

Example 4 Factorise $6 x^{2}-11 x-10$

$$
\begin{aligned}
& b=-11, a c=-60 \\
& \text { So } \\
& \begin{aligned}
6 x^{2}-11 x-10 & =6 x^{2}-15 x+4 x-10 \\
& =3 x(2 x-5)+2(2 x-5) \\
& =(2 x-5)(3 x+2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-60$ which add to give $b=-11$ (-15 and 4)
2 Rewrite the b term ($-11 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(2 x-5)$ is a factor of both terms

Example 5 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$
$\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$

For the numerator:
$b=-4, a c=-21$
So
$x^{2}-4 x-21=x^{2}-7 x+3 x-21$
$=x(x-7)+3(x-7)$
$=(x-7)(x+3)$
For the denominator:
$b=9, a c=18$
So
$2 x^{2}+9 x+9=2 x^{2}+6 x+3 x+9$
$=2 x(x+3)+3(x+3)$
$=(x+3)(2 x+3)$
So
$\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}=\frac{(x-7)(x+3)}{(x+3)(2 x+3)}$
$=\frac{x-7}{2 x+3}$

1 Factorise the numerator and the denominator

2 Work out the two factors of $a c=-21$ which add to give $b=-4$ (-7 and 3)

3 Rewrite the b term ($-4 x$) using these two factors
4 Factorise the first two terms and the last two terms
$5(x-7)$ is a factor of both terms
6 Work out the two factors of $a c=18$ which add to give $b=9$ (6 and 3)

7 Rewrite the b term ($9 x$) using these two factors
8 Factorise the first two terms and the last two terms
$9(x+3)$ is a factor of both terms
$10(x+3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice

1 Factorise.
a $\quad 6 x^{4} y^{3}-10 x^{3} y^{4}$
b $\quad 21 a^{3} b^{5}+35 a^{5} b^{2}$
c $25 x^{2} y^{2}-10 x^{3} y^{2}+15 x^{2} y^{3}$

2 Factorise

Hint

Take the highest common factor outside the bracket.
a $\quad x^{2}+7 x+12$
b $\quad x^{2}+5 x-14$
c $x^{2}-11 x+30$
d $x^{2}-5 x-24$
e $\quad x^{2}-7 x-18$
g $\quad x^{2}-3 x-40$
f $x^{2}+x-20$
h $\quad x^{2}+3 x-28$

3 Factorise
a $36 x^{2}-49 y^{2}$
b $\quad 4 x^{2}-81 y^{2}$
c $\quad 18 a^{2}-200 b^{2} c^{2}$

4 Factorise
a $\quad 2 x^{2}+x-3$
b $\quad 6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $\quad 12 x^{2}-38 x+20$

5 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

6 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

7 Simplify $\sqrt{x^{2}+10 x+25}$
$8 \quad$ Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $a x^{2}+b x+c$ into the form $p(x+q)^{2}+r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^{2}+6 x-2$

$$
\begin{array}{|l|ll}
\hline x^{2}+6 x-2 & \mathbf{1} & \text { Write } x^{2}+b x+c \text { in the form } \\
=(x+3)^{2}-9-2 & & \left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c \\
=(x+3)^{2}-11 & \mathbf{2} \quad \text { Simplify }
\end{array}
$$

Example 2 Write $2 x^{2}-5 x+1$ in the form $p(x+q)^{2}+r$

$2 x^{2}-5 x+1$	$\mathbf{1}$Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$ $=2\left(x^{2}-\frac{5}{2} x\right)+1$ $=2\left(\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+1$ Now complete the square by writing $x^{2}-\frac{5}{2} x$ in the form
$=2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}+1$	$\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$
$=2\left(x-\frac{5}{4}\right)^{2}-\frac{17}{8}$	Expand the square brackets - don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the tor of 2

Practice

1 Write the following quadratic expressions in the form $(x+p)^{2}+q$
a $\quad x^{2}+4 x+3$
b $\quad x^{2}-10 x-3$
c $x^{2}-8 x$
d $x^{2}+6 x$
e $\quad x^{2}-2 x+7$
f $\quad x^{2}+3 x-2$

2 Write the following quadratic expressions in the form $p(x+q)^{2}+r$
a $2 x^{2}-8 x-16$
b $4 x^{2}-8 x-16$
c $\quad 3 x^{2}+12 x-9$
d $2 x^{2}+6 x-8$

3 Complete the square.
a $\quad 2 x^{2}+3 x+6$
b $\quad 3 x^{2}-2 x$
c $5 x^{2}+3 x$
d $3 x^{2}+5 x+3$

Extend

4 Write $\left(25 x^{2}+30 x+12\right)$ in the form $(a x+b)^{2}+c$.

Solving quadratic equations by
 factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $a x^{2}+b x+c=0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is $a c$.
- When the product of two numbers is 0 , then at least one of the numbers must be 0 .
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5 x^{2}=15 x$

$$
\begin{aligned}
& 5 x^{2}=15 x \\
& 5 x^{2}-15 x=0 \\
& 5 x(x-3)=0 \\
& \text { So } 5 x=0 \text { or }(x-3)=0 \\
& \text { Therefore } x=0 \text { or } x=3
\end{aligned}
$$

1 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero.
Do not divide both sides by x as this would lose the solution $x=0$.
2 Factorise the quadratic equation. $5 x$ is a common factor.
3 When two values multiply to make zero, at least one of the values must be zero.
4 Solve these two equations.

Example 2 Solve $x^{2}+7 x+12=0$
$x^{2}+7 x+12=0$
$b=7, a c=12$
$x^{2}+4 x+3 x+12=0$
$x(x+4)+3(x+4)=0$
$(x+4)(x+3)=0$
So $(x+4)=0$ or $(x+3)=0$
Therefore $x=-4$ or $x=-3$

1 Factorise the quadratic equation.
Work out the two factors of $a c=12$
which add to give you $b=7$.
(4 and 3)
2 Rewrite the b term (7x) using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x+4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Example 3 Solve $9 x^{2}-16=0$

$$
\begin{aligned}
& 9 x^{2}-16=0 \\
& (3 x+4)(3 x-4)=0 \\
& \text { So }(3 x+4)=0 \text { or }(3 x-4)=0 \\
& x=-\frac{4}{3} \text { or } x=\frac{4}{3}
\end{aligned}
$$

1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3 x)^{2}$ and $(4)^{2}$.
2 When two values multiply to make zero, at least one of the values must be zero.
3 Solve these two equations.

Example 4 Solve $2 x^{2}-5 x-12=0$

$$
\begin{aligned}
& b=-5, a c=-24 \\
& \text { So } 2 x^{2}-8 x+3 x-12=0 \\
& 2 x(x-4)+3(x-4)=0 \\
& (x-4)(2 x+3)=0 \\
& \text { So }(x-4)=0 \text { or }(2 x+3)=0 \\
& x=4 \text { or } x=-\frac{3}{2}
\end{aligned}
$$

1 Factorise the quadratic equation.
Work out the two factors of $a c=-24$ which add to give you $b=-5$. (-8 and 3)
2 Rewrite the b term ($-5 x$) using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x-4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Practice

1 Solve
a $\quad 6 x^{2}+4 x=0$
b $28 x^{2}-21 x=0$
c $x^{2}+7 x+10=0$
d $x^{2}-5 x+6=0$
e $\quad x^{2}-3 x-4=0$
f $x^{2}+3 x-10=0$
g $\quad x^{2}-10 x+24=0$
h $x^{2}-36=0$
i $\quad x^{2}+3 x-28=0$
j $\quad x^{2}-6 x+9=0$
k $2 x^{2}-7 x-4=0$
l $3 x^{2}-13 x-10=0$

2 Solve
a $\quad x^{2}-3 x=10$
b $\quad x^{2}-3=2 x$
c $\quad x^{2}+5 x=24$
d $x^{2}-42=x$
e $\quad x(x+2)=2 x+25$
f $\quad x^{2}-30=3 x-2$
g $\quad x(3 x+1)=x^{2}+15$
h $3 x(x-1)=2(x+1)$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square lets you write a quadratic equation in the form $p(x+q)^{2}+r=0$.

Examples

Example 5 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$$
\begin{aligned}
& x^{2}+6 x+4=0 \\
& (x+3)^{2}-9+4=0 \\
& (x+3)^{2}-5=0 \\
& (x+3)^{2}=5 \\
& x+3= \pm \sqrt{5} \\
& x= \pm \sqrt{5}-3 \\
& \text { So } x=-\sqrt{5}-3 \text { or } x=\sqrt{5}-3
\end{aligned}
$$

1 Write $x^{2}+b x+c=0$ in the form

$$
\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=0
$$

2 Simplify.
3 Rearrange the equation to work out x. First, add 5 to both sides.
4 Square root both sides.
Remember that the square root of a value gives two answers.
5 Subtract 3 from both sides to solve the equation.
6 Write down both solutions.

Example 6 Solve $2 x^{2}-7 x+4=0$. Give your solutions in surd form.

$2 x^{2}-7 x+4=0$	$\mathbf{1}$Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$ $2\left(x^{2}-\frac{7}{2} x\right)+4=0$ $2\left[\left(x-\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}\right]+4=0$
$\mathbf{2}$Now complete the square by writing $x^{2}-\frac{7}{2} x$ in the form $\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}$ $2\left(x-\frac{7}{4}\right)^{2}-\frac{49}{8}+4=0$ $\mathbf{3}$Expand the square brackets. $2\left(x-\frac{7}{4}\right)^{2}-\frac{17}{8}=0$ $\mathbf{4}$Simplify. (continued on next page)	

$2\left(x-\frac{7}{4}\right)^{2}=\frac{17}{8}$	$\mathbf{5}$Rearrange the equation to work out x. First, add $\frac{17}{8}$ to both sides.
$\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16}$	$\mathbf{6} \quad$Divide both sides by 2.
$x-\frac{7}{4}= \pm \frac{\sqrt{17}}{4}$	7 Square root both sides. Remember that the square root of a value gives two answers. $x= \pm \frac{\sqrt{17}}{4}+\frac{7}{4}$ So $x=\frac{7}{4}-\frac{\sqrt{17}}{4}$ or $x=\frac{7}{4}+\frac{\sqrt{17}}{4}$$\quad \mathbf{9}$ Write down both the solutions.

Practice

3 Solve by completing the square.
a $x^{2}-4 x-3=0$
b $x^{2}-10 x+4=0$
c $x^{2}+8 x-5=0$
d $x^{2}-2 x-6=0$
e $2 x^{2}+8 x-5=0$
f $5 x^{2}+3 x-4=0$

4 Solve by completing the square.
a $(x-4)(x+2)=5$
b $\quad 2 x^{2}+6 x-7=0$
c $x^{2}-5 x+3=0$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $a x^{2}+b x+c=0$ can be solved using the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- If $b^{2}-4 a c$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$$
\begin{array}{l|l}
a=1, b=6, c=4 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \mathbf{1} \begin{array}{l}
\text { Identify } a, b \text { and } c \text { and write down } \\
\text { the formula. } \\
\text { Remember that }-b \pm \sqrt{b^{2}-4 a c} \text { is } \\
\text { all over } 2 a, \text { not just part of it. }
\end{array} \\
x=\frac{-6 \pm \sqrt{6^{2}-4(1)(4)}}{2(1)} & \mathbf{2} \begin{array}{l}
\text { Substitute } a=1, b=6, c=4 \text { into the } \\
\text { formula. }
\end{array} \\
x=\frac{-6 \pm \sqrt{20}}{2} & \mathbf{3} \begin{array}{l}
\text { Simplify. The denominator is } 2 \text {, but } \\
\text { this if only because } a=1 . \text { The } \\
\text { denominator will not always be } 2 .
\end{array} \\
x=\frac{-6 \pm 2 \sqrt{5}}{2} & \text { 4 } \begin{array}{l}
\text { Simplify } \sqrt{20} .
\end{array} \begin{array}{l}
\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \times \sqrt{5}=2 \sqrt{5}
\end{array} \\
x=-3 \pm \sqrt{5} & \text { 5 } \begin{array}{l}
\text { Simplify by dividing numerator and } \\
\text { denominator by } 2 .
\end{array} \\
\text { So } x=-3-\sqrt{5} \text { or } x=\sqrt{5}-3 & \text { 6 } \begin{array}{l}
\text { Write down both the solutions. }
\end{array}
\end{array}
$$

Example 8 Solve $3 x^{2}-7 x-2=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=3, b=-7, c=-2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(3)(-2)}}{2(3)} \\
& x=\frac{7 \pm \sqrt{73}}{6} \\
& \text { So } x=\frac{7-\sqrt{73}}{6} \text { or } x=\frac{7+\sqrt{73}}{6}
\end{aligned}
$$

1 Identify a, b and c, making sure you get the signs right and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=3, b=-7, c=-2$ into the formula.

3 Simplify. The denominator is 6 when $a=3$. A common mistake is to always write a denominator of 2 .
4 Write down both the solutions.

Practice

5 Solve, giving your solutions in surd form.
a $3 x^{2}+6 x+2=0$
b $2 x^{2}-4 x-7=0$

6 Solve the equation $x^{2}-7 x+2=0$
Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.
7 Solve $10 x^{2}+3 x+3=5$
Give your solution in surd form.

Hint

Get all terms onto one side of the equation.

Extend

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
a $4 x(x-1)=3 x-2$
b $\quad 10=(x+1)^{2}$
c $x(3 x-1)=10$

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y=a x^{2}+b x+c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and
 a shape as shown.
- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y=x^{2}$.

The graph of $y=x^{2}$ is a parabola.
When $x=0, y=0$.
$a=1$ which is greater than zero, so the graph has the shape:

Example 2 Sketch the graph of $y=x^{2}-x-6$.

When $x=0, y=0^{2}-0-6=-6$
So the graph intersects the y-axis at ($0,-6$)
When $y=0, x^{2}-x-6=0$
$(x+2)(x-3)=0$
$x=-2$ or $x=3$

So,
the graph intersects the x-axis at $(-2,0)$ and (3,0)

1 Find where the graph intersects the y-axis by substituting $x=0$.

2 Find where the graph intersects the x-axis by substituting $y=0$.
3 Solve the equation by factorising.
4 Solve $(x+2)=0$ and $(x-3)=0$.
$5 a=1$ which is greater than zero, so the graph has the shape:

$x^{2}-x-6=\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-6$	6To find the turning point, complete the square.
$=\left(x-\frac{1}{2}\right)^{2}-\frac{25}{4}$	When $\left(x-\frac{1}{2}\right)^{2}=0, x=\frac{1}{2}$ and $y=-\frac{25}{4}$, so the turning point is at the point $\left(\frac{1}{2},-\frac{25}{4}\right)$ The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero.

Practice

1 Sketch the graph of $y=-x^{2}$.

2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $\quad y=x(x-3)$
c $\quad y=(x+1)(x+5)$

3 Sketch each graph, labelling where the curve crosses the axes.
a $y=x^{2}-x-6$
b $y=x^{2}-5 x+4$
c $\quad y=x^{2}-4$
d $y=x^{2}+4 x$
e $\quad y=9-x^{2}$
f $y=x^{2}+2 x-3$

4 Sketch the graph of $y=2 x^{2}+5 x-3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
a $y=x^{2}-5 x+6$
b $\quad y=-x^{2}+7 x-12$
c $y=-x^{2}+4 x$

6 Sketch the graph of $y=x^{2}+2 x+1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations $3 x+y=5$ and $x+y=1$

$\begin{array}{r} 3 x+y=5 \\ -\quad x+y=1 \\ \hline 2 x \quad=4 \end{array}$			Subtract the second equation from the first equation to eliminate the y	
		term.		
So $x=2$				
$\begin{aligned} \text { Using } x+y & =1 \\ 2+y & =1\end{aligned}$			2	To find the value of y, substitute $x=2$ into one of the original
So $y=-1$			equations.	
Check: equation $1: 3 \times 2+(-1)=5$ equation 2: $2+(-1)=1$	YES YES	3	Substitute the values of x and y into both equations to check your answers.	

Example 2 Solve $x+2 y=13$ and $5 x-2 y=5$ simultaneously.

$x+2 y=13$
$+\quad 5 x-2 y=5$
$6 x \quad=18$
So $x=3$
Using $x+2 y=13$
$3+2 y=13$
So $y=5$
Check:
equation $1: 3+2 \times 5=13 \quad$ YES
equation $2: 5 \times 3-2 \times 5=5$ YES

1 Add the two equations together to eliminate the y term.

2 To find the value of y, substitute $x=3$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Example 3 Solve $2 x+3 y=2$ and $5 x+4 y=12$ simultaneously.

$\begin{aligned} & (2 x+3 y=2) \times 4 \rightarrow \\ & (5 x+4 y=12) \times 3 \rightarrow \end{aligned}$	$\begin{array}{r} 8 x+12 y=8 \\ 15 x+12 y=36 \\ \hline \end{array}$
	$7 x=28$
So $x=4$	
$\begin{array}{r} \text { Using } 2 x+3 y=2 \\ 2 \times 4+3 y=2 \end{array}$	
So $y=-2$	
Check: equation 1: $2 \times 4+3$ equation 2 : $5 \times 4+4 \times$	$\begin{aligned} & (-2)=2 \text { YES } \\ & <(-2)=12 \text { YES } \end{aligned}$

1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term.

2 To find the value of y, substitute $x=4$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.

$$
1 \quad \begin{aligned}
& 4 x+y=8 \\
& \\
& x+y=5
\end{aligned}
$$

$2 \quad 3 x+y=7$
$3 x+2 y=5$
$3 \quad 4 x+y=3$
$3 x-y=11$
$43 x+4 y=7$
$x-4 y=5$
$5 \quad 2 x+y=11$
$x-3 y=9$
$6 \quad 2 x+3 y=11$
$3 x+2 y=4$

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous
Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

- The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations $y=2 x+1$ and $5 x+3 y=14$

```
\(5 x+3(2 x+1)=14\)
\(5 x+6 x+3=14\)
\(11 x+3=14\)
\(11 x=11\)
So \(x=1\)
Using \(y=2 x+1\)
    \(y=2 \times 1+1\)
So \(y=3\)
Check:
    equation 1: \(3=2 \times 1+1 \quad\) YES
    equation \(2: 5 \times 1+3 \times 3=14\) YES
```

1 Substitute $2 x+1$ for y into the second equation.
2 Expand the brackets and simplify.
3 Work out the value of x.

4 To find the value of y, substitute $x=1$ into one of the original equations.

5 Substitute the values of x and y into both equations to check your answers.

Example 5 Solve $2 x-y=16$ and $4 x+3 y=-3$ simultaneously.

```
y=2x-16
4x+3(2x-16)=-3
4x+6x-48=-3
10x-48=-3
10x=45
So }x=4\frac{1}{2
Using }y=2x-1
    y=2\times4\frac{1}{2}-16
So }y=-
Check:
equation 1: 2 < 4\frac{1}{2}-(-7)=16
YES
equation 2: 4 < 4\frac{1}{2}+3\times(-7)=-3 YES
```

1 Rearrange the first equation.
2 Substitute $2 x-16$ for y into the second equation.
3 Expand the brackets and simplify.
4 Work out the value of x.

5 To find the value of y, substitute $x=4 \frac{1}{2}$ into one of the original equations.

6 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$7 \quad \begin{aligned} & y=x-4 \\ & 2 x+5 y=43\end{aligned}$
$92 y=4 x+5$
$9 x+5 y=22$
$113 x+4 y=8$
$2 x-y=-13$
$133 x=y-1$
$2 y-2 x=3$
$10 \quad 2 x=y-2$
$8 x-5 y=-11$
$8 \quad \begin{aligned} & y=2 x-3 \\ & \\ & 5 x-3 y=11\end{aligned}$
$12 \begin{aligned} 3 y & =4 x-7 \\ 2 y & =3 x-4\end{aligned}$
$2 y=3 x-4$
$143 x+2 y+1=0$
$4 y=8-x$

Extend

15 Solve the simultaneous equations $3 x+5 y-20=0$ and $2(x+y)=\frac{3(y-x)}{4}$.

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y=x+1$ and $x^{2}+y^{2}=13$

Example 2 Solve $2 x+3 y=5$ and $2 y^{2}+x y=12$ simultaneously.
$x=\frac{5-3 y}{2}$
$2 y^{2}+\left(\frac{5-3 y}{2}\right) y=12$
$2 y^{2}+\frac{5 y-3 y^{2}}{2}=12$
$4 y^{2}+5 y-3 y^{2}=24$
$y^{2}+5 y-24=0$
$(y+8)(y-3)=0$
So $y=-8$ or $y=3$
Using $2 x+3 y=5$
When $y=-8, \quad 2 x+3 \times(-8)=5, \quad x=14.5$
When $y=3, \quad 2 x+3 \times 3=5, \quad x=-2$
So the solutions are
$x=14.5, y=-8$ and $x=-2, y=3$
Check:
equation 1: $2 \times 14.5+3 \times(-8)=5 \quad$ YES and $2 \times(-2)+3 \times 3=5$

YES
equation $2: 2 \times(-8)^{2}+14.5 \times(-8)=12$ YES

$$
\text { and } 2 \times(3)^{2}+(-2) \times 3=12
$$

1 Rearrange the first equation.
2 Substitute $\frac{5-3 y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.

3 Expand the brackets and simplify.

4 Factorise the quadratic equation.
5 Work out the values of y.
6 To find the value of x, substitute both values of y into one of the original equations.

7 Substitute both pairs of values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$1 y=2 x+1$
$x^{2}+y^{2}=10$
$2 y=6-x$
$x^{2}+y^{2}=20$
$3 y=x-3$
$x^{2}+y^{2}=5$
$4 y=9-2 x$
$x^{2}+y^{2}=17$
$5 \quad y=3 x-5$
$y=x^{2}-2 x+1$
$6 \quad y=x-5$
$y=x^{2}-5 x-12$
$7 y=x+5$
$x^{2}+y^{2}=25$
$8 \quad \begin{aligned} & y=2 x-1 \\ & \\ & x^{2}+x y=24\end{aligned}$
$9 y=2 x$
$y^{2}-x y=8$
$10 \quad 2 x+y=11$
$x y=15$

Extend

$11 x-y=1$
$x^{2}+y^{2}=3$
$12 y-x=2$
$x^{2}+x y=3$

Solving simultaneous equations graphically

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- You can solve any pair of simultaneous equations by drawing the graph of both equations and finding the point/points of intersection.

Examples

Example 1 Solve the simultaneous equations $y=5 x+2$ and $x+y=5$ graphically.

$$
\begin{aligned}
& y=5-x \\
& y=5-x \text { has gradient }-1 \text { and } y \text {-intercept } 5 . \\
& y=5 x+2 \text { has gradient } 5 \text { and } y \text {-intercept } 2 .
\end{aligned}
$$

Lines intersect at

$$
x=0.5, y=4.5
$$

Check:
First equation $y=5 x+2$:

$$
4.5=5 \times 0.5+2 \quad \text { YES }
$$

Second equation $x+y=5$:
$0.5+4.5=5 \quad$ YES

1 Rearrange the equation $x+y=5$ to make y the subject.
2 Plot both graphs on the same grid using the gradients and y-intercepts.

3 The solutions of the simultaneous equations are the point of intersection.

4 Check your solutions by substituting the values into both equations.

Example 2 Solve the simultaneous equations $y=x-4$ and $y=x^{2}-4 x+2$ graphically.

The line and curve intersect at

$$
x=3, y=-1 \text { and } x=2, y=-2
$$

Check:
First equation $y=x-4$:

$$
\begin{array}{ll}
-1=3-4 & \text { YES } \\
-2=2-4 & \text { YES }
\end{array}
$$

Second equation $y=x^{2}-4 x+2$:

$$
\begin{array}{ll}
-1=3^{2}-4 \times 3+2 & \text { YES } \\
-2=2^{2}-4 \times 2+2 & \text { YES }
\end{array}
$$

1 Construct a table of values and calculate the points for the quadratic equation.

2 Plot the graph.
3 Plot the linear graph on the same grid using the gradient and y-intercept.
$y=x-4$ has gradient 1 and y-intercept -4 .

4 The solutions of the simultaneous equations are the points of intersection.

5 Check your solutions by substituting the values into both equations.

Practice

1 Solve these pairs of simultaneous equations graphically.
a $y=3 x-1$ and $y=x+3$
b $y=x-5$ and $y=7-5 x$
c $y=3 x+4$ and $y=2-x$

2 Solve these pairs of simultaneous equations graphically.
a $x+y=0$ and $y=2 x+6$
b $\quad 4 x+2 y=3$ and $y=3 x-1$
c $\quad 2 x+y+4=0$ and $2 y=3 x-1$

Hint

Rearrange the equation to make y the subject.

3 Solve these pairs of simultaneous equations graphically.
a $y=x-1$ and $y=x^{2}-4 x+3$
b $y=1-3 x$ and $y=x^{2}-3 x-3$
c $y=3-x$ and $y=x^{2}+2 x+5$
4 Solve the simultaneous equations $x+y=1$ and $x^{2}+y^{2}=25$ graphically.

Extend

5 a Solve the simultaneous equations $2 x+y=3$ and $x^{2}+y=4$
i graphically
ii algebraically to 2 decimal places.
b Which method gives the more accurate solutions? Explain your answer.

Linear inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities - linear and quadratic (including graphical solutions)

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \leq 4 x<16$

| $-8 \leq 4 x<16$ |
| :--- | :--- |
| $-2 \leq x<4$ |\quad Divide all three terms by 4.0 .

Example 2 Solve $4 \leq 5 x<10$

$4 \leq 5 x<10$	Divide all three terms by 5.
$\frac{4}{5} \leq x<2$	

Example 3 Solve $2 x-5<7$

$2 x-5$	<7	$\mathbf{1}$	Add 5 to both sides.
$2 x$	<12		
x	<6	$\mathbf{2}$	Divide both sides by 2.

Example 4 Solve 2-5x $\mathbf{x}-8$

$$
\begin{array}{r|l}
2-5 x & \geq-8 \\
-5 x \geq-10 & \mathbf{1} \\
x \leq 2 & \text { Subtract } 2 \text { from both sides. } \\
& \begin{array}{l}
\text { Divide both sides by }-5 . \\
\\
\\
\text { Remember to reverse the inequality } \\
\text { when dividing by a negative } \\
\\
\\
\text { number. }
\end{array}
\end{array}
$$

Example 5 Solve 4 $(x-2)>3(9-x)$

$$
\begin{aligned}
4(x-2) & >3(9-x) \\
4 x-8 & >27-3 x \\
7 x-8 & >27 \\
7 x & >35 \\
x & >5
\end{aligned}
$$

1 Expand the brackets.
2 Add $3 x$ to both sides.
3 Add 8 to both sides.
4 Divide both sides by 7 .

Practice

1 Solve these inequalities.
a $4 x>16$
b $\quad 5 x-7 \leq 3$
c $\quad 1 \geq 3 x+4$
d $\quad 5-2 x<12$
e $\quad \frac{x}{2} \geq 5$
f $\quad 8<3-\frac{x}{3}$

2 Solve these inequalities.
a $\frac{x}{5}<-4$
b $\quad 10 \geq 2 x+3$
c $\quad 7-3 x>-5$

3 Solve
a $\quad 2-4 x \geq 18$
b $\quad 3 \leq 7 x+10<45$
c $\quad 6-2 x \geq 4$
d $4 x+17<2-x$
e $\quad 4-5 x<-3 x$
f $\quad-4 x \geq 24$

4 Solve these inequalities.
a $3 t+1<t+6$
b $\quad 2(3 n-1) \geq n+5$

5 Solve.
a $\quad 3(2-x)>2(4-x)+4$
b $\quad 5(4-x)>3(5-x)+2$

Extend

6 Find the set of values of x for which $2 x+1>11$ and $4 x-2>16-2 x$.

Quadratic inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities - linear and quadratic (including graphical solutions)

Key points

- First replace the inequality sign by $=$ and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

Examples

Example 1 Find the set of values of x which satisfy $x^{2}+5 x+6>0$

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=(x+3)(x+2)$

3 Identify on the graph where $x^{2}+5 x+6>0$, i.e. where $y>0$

4 Write down the values which satisfy the inequality $x^{2}+5 x+6>0$

Example 2 Find the set of values of x which satisfy $x^{2}-5 x \leq 0$

$0 \leq x \leq 5$

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=x(x-5)$
3 Identify on the graph where $x^{2}-5 x \leq 0$, i.e. where $y \leq 0$

4 Write down the values which satisfy the inequality $x^{2}-5 x \leq 0$

Example 3 Find the set of values of x which satisfy $-x^{2}-3 x+10 \geq 0$

Practice

1 Find the set of values of x for which $(x+7)(x-4) \leq 0$

2 Find the set of values of x for which $x^{2}-4 x-12 \geq 0$

3 Find the set of values of x for which $2 x^{2}-7 x+3<0$

4 Find the set of values of x for which $4 x^{2}+4 x-3>0$

5 Find the set of values of x for which $12+x-x^{2} \geq 0$

Extend

Find the set of values which satisfy the following inequalities.
$6 \quad x^{2}+x \leq 6$
$7 x(2 x-9)<-10$
$8 \quad 6 x^{2} \geq 15+x$

Sketching cubic and reciprocal graphs

A LEVEL LINKS

Scheme of work: 1e. Graphs - cubic, quartic and reciprocal

Key points

- The graph of a cubic function, which can be written in the form $y=a x^{3}+b x^{2}+c x+d$, where $a \neq 0$, has one of the shapes shown here.

special case: $a=1$

special case: $a=-1$
- The graph of a reciprocal function of the form $y=\frac{a}{x}$ has one of the shapes shown here.

- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- Where appropriate, mark and label the asymptotes on the graph.
- Asymptotes are lines (usually horizontal or vertical) which the curve gets closer to but never touches or crosses. Asymptotes usually occur with reciprocal functions. For example, the asymptotes for the graph of $y=\frac{a}{x}$ are the two axes (the lines $y=0$ and $x=0$).
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- A double root is when two of the solutions are equal. For example $(x-3)^{2}(x+2)$ has a double root at $x=3$.
- When there is a double root, this is one of the turning points of a cubic function.

Examples

Example 1 Sketch the graph of $y=(x-3)(x-1)(x+2)$
To sketch a cubic curve find intersects with both axes and use the key points above for the correct shape.

When $x=0, y=(0-3)(0-1)(0+2)$

$$
=(-3) \times(-1) \times 2=6
$$

The graph intersects the y-axis at $(0,6)$
When $y=0,(x-3)(x-1)(x+2)=0$
So $x=3, x=1$ or $x=-2$
The graph intersects the x-axis at $(-2,0),(1,0)$ and $(3,0)$

1 Find where the graph intersects the axes by substituting $x=0$ and $y=0$. Make sure you get the coordinates the right way around, (x, y).
2 Solve the equation by solving $x-3=0, x-1=0$ and $x+2=0$

3 Sketch the graph.
$a=1>0$ so the graph has the shape:

Example 2 Sketch the graph of $y=(x+2)^{2}(x-1)$
To sketch a cubic curve find intersects with both axes and use the key points above for the correct shape.

When $x=0, y=(0+2)^{2}(0-1)$

$$
=2^{2} \times(-1)=-4
$$

The graph intersects the y-axis at $(0,-4)$
When $y=0,(x+2)^{2}(x-1)=0$
So $x=-2$ or $x=1$
$(-2,0)$ is a turning point as $x=-2$ is a double root.
The graph crosses the x-axis at $(1,0)$

1 Find where the graph intersects the axes by substituting $x=0$ and $y=0$.

2 Solve the equation by solving $x+2=0$ and $x-1=0$
$3 a=1>0$ so the graph has the shape:

Practice

1 Here are six equations.
A $y=\frac{5}{x}$
B $\quad y=x^{2}+3 x-10$
C $y=x^{3}+3 x^{2}$
D $y=1-3 x^{2}-x^{3}$
E $\quad y=x^{3}-3 x^{2}-1$
F $\quad x+y=5$

Hint

Find where each of the cubic equations cross the y-axis.

Here are six graphs.
i

ii

iii

iv

v

vi

a Match each graph to its equation.
b Copy the graphs ii, iv and vi and draw the tangent and normal each at point P.

Sketch the following graphs
$2 y=2 x^{3}$
$3 y=x(x-2)(x+2)$
$4 y=(x+1)(x+4)(x-3)$
$5 \quad y=(x+1)(x-2)(1-x)$
$6 \quad y=(x-3)^{2}(x+1)$
$7 y=(x-1)^{2}(x-2)$
$8 y=\frac{3}{x}$
$9 y=-\frac{2}{x}$

Hint: Look at the shape of $y=\frac{a}{x}$
in the second key point.

Extend

10 Sketch the graph of $y=\frac{1}{x+2} \quad 11 \quad$ Sketch the graph of $y=\frac{1}{x-1}$

Translating graphs

A LEVEL LINKS

Scheme of work: 1f. Transformations - transforming graphs - $\mathrm{f}(x)$ notation

Key points

- The transformation $y=\mathrm{f}(x) \pm a$ is a translation of $y=\mathrm{f}(x)$ parallel to the y-axis; it is a vertical translation.

As shown on the graph,
$\begin{array}{ll}\text { ○ } & y=\mathrm{f}(x)+a \text { translates } y=\mathrm{f}(x) \text { up } \\ \text { - } & y=\mathrm{f}(x)-a \text { translates } y=\mathrm{f}(x) \text { down. }\end{array}$

- The transformation $y=\mathrm{f}(x \pm a)$ is a translation of $y=\mathrm{f}(x)$ parallel to the x-axis; it is a horizontal translation.

As shown on the graph,

- $y=\mathrm{f}(x+a)$ translates $y=\mathrm{f}(x)$ to the left
- $y=\mathrm{f}(x-a)$ translates $y=\mathrm{f}(x)$ to the right.

Examples

Example 1 The graph shows the function $y=\mathrm{f}(x)$.
Sketch the graph of $y=\mathrm{f}(x)+2$.

	$y=\mathrm{f}(x)+2$ $y=\mathrm{f}(x)$
0	For the function $y=\mathrm{f}(x)+2$ translate the function $y=\mathrm{f}(x) 2$ units up.

Example 2 The graph shows the function $y=\mathrm{f}(x)$.

Sketch the graph of $y=\mathrm{f}(x-3)$.

	For the function $y=\mathrm{f}(x-3)$ translate the function $y=\mathrm{f}(x) 3$ units right.
-f	

Practice

1 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch and label the graphs of $y=\mathrm{f}(x)+4$ and $y=\mathrm{f}(x+2)$.

2 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch and label the graphs of $y=\mathrm{f}(x+3)$ and $y=\mathrm{f}(x)-3$.

3 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch the graph of $y=\mathrm{f}(x-5)$.

4 The graph shows the function $y=\mathrm{f}(x)$ and two transformations of $y=\mathrm{f}(x)$, labelled C_{1} and C_{2}. Write down the equations of the translated curves C_{1} and C_{2} in function form.

5 The graph shows the function $y=\mathrm{f}(x)$ and two transformations of $y=\mathrm{f}(x)$, labelled C_{1} and C_{2}. Write down the equations of the translated curves C_{1} and C_{2} in function form.

6 The graph shows the function $y=\mathrm{f}(x)$.
a Sketch the graph of $y=\mathrm{f}(x)+2$
b Sketch the graph of $y=\mathrm{f}(x+2)$

			y^{4}				
			2				
			,				
	4		21^{O}	12	3		4
			- ${ }^{-1}$				
				,			

Stretching graphs

A LEVEL LINKS

Scheme of work: 1f. Transformations - transforming graphs - $\mathrm{f}(x)$ notation
Textbook: Pure Year 1, 4.6 Stretching graphs

Key points

- The transformation $y=\mathrm{f}(a x)$ is a horizontal stretch of $y=\mathrm{f}(x)$ with scale factor $\frac{1}{a}$ parallel to the x-axis.
- The transformation $y=\mathrm{f}(-a x)$ is a horizontal stretch of $y=\mathrm{f}(x)$ with scale factor $\frac{1}{a}$ parallel to the x-axis and then a reflection in the y-axis.

- The transformation $y=a \mathrm{f}(x)$ is a vertical stretch of $y=\mathrm{f}(x)$ with scale factor a parallel to the y-axis.

- The transformation $y=-a \mathrm{f}(x)$ is a vertical stretch of $y=\mathrm{f}(x)$ with scale factor a parallel to the y-axis and then a reflection in the x-axis.

Examples

Example 3 The graph shows the function $y=\mathrm{f}(x)$.
Sketch and label the graphs of $y=2 \mathrm{f}(x)$ and $y=-\mathrm{f}(x)$.

The function $y=2 \mathrm{f}(x)$ is a vertical stretch of $y=\mathrm{f}(x)$ with scale factor 2 parallel to the y-axis.
The function $y=-\mathrm{f}(x)$ is a reflection of $y=\mathrm{f}(x)$ in the x-axis.

Example 4 The graph shows the function $y=\mathrm{f}(x)$.
Sketch and label the graphs of $y=\mathrm{f}(2 x)$ and $y=\mathrm{f}(-x)$.

The function $y=\mathrm{f}(2 x)$ is a horizontal stretch of $y=\mathrm{f}(x)$ with scale factor $\frac{1}{2}$ parallel to the x-axis.

The function $y=\mathrm{f}(-x)$ is a reflection of $y=\mathrm{f}(x)$ in the y-axis.

Practice

7 The graph shows the function $y=\mathrm{f}(x)$.
a Copy the graph and on the same axes sketch and label the graph of $y=3 \mathrm{f}(x)$.
b Make another copy of the graph and on the same axes sketch and label the graph of $y=\mathrm{f}(2 x)$.

8 The graph shows the function $y=\mathrm{f}(x)$. Copy the graph and on the same axes sketch and label the graphs of $y=-2 \mathrm{f}(x)$ and $y=\mathrm{f}(3 x)$.

9 The graph shows the function $y=\mathrm{f}(x)$. Copy the graph and, on the same axes, sketch and label the graphs of $y=-\mathrm{f}(x)$ and $y=\mathrm{f}\left(\frac{1}{2} x\right)$.

10 The graph shows the function $y=\mathrm{f}(x)$. Copy the graph and, on the same axes, sketch the graph of $y=-\mathrm{f}(2 x)$.

11 The graph shows the function $y=\mathrm{f}(x)$ and a transformation, labelled C.
Write down the equation of the translated curve C in function form.

12 The graph shows the function $y=\mathrm{f}(x)$ and a transformation labelled C.
Write down the equation of the translated curve C in function form.

13 The graph shows the function $y=\mathrm{f}(x)$.
a Sketch the graph of $y=-\mathrm{f}(x)$.
b Sketch the graph of $y=2 \mathrm{f}(x)$.

Extend

14 a Sketch and label the graph of $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=(x-1)(x+1)$.
b On the same axes, sketch and label the graphs of $y=\mathrm{f}(x)-2$ and $y=\mathrm{f}(x+2)$.

15 a Sketch and label the graph of $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=-(x+1)(x-2)$.
b On the same axes, sketch and label the graph of $y=\mathrm{f}\left(-\frac{1}{2} x\right)$.

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y=m x+c$, where m is the gradient and c is the y-intercept (where $x=0$).
- The equation of a straight line can be written in the form $a x+b y+c=0$, where a, b and c are integers.
- When given the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of two points on a line the gradient is calculated using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3 .
Write the equation of the line in the form $a x+b y+c=0$.

$$
\begin{aligned}
& m=-\frac{1}{2} \text { and } c=3 \\
& \text { So } y=-\frac{1}{2} x+3 \\
& \frac{1}{2} x+y-3=0 \\
& x+2 y-6=0
\end{aligned}
$$

1 A straight line has equation $y=m x+c$. Substitute the gradient and y-intercept given in the question into this equation.
2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
3 Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the y-intercept of the line with the equation $3 y-2 x+4=0$.

$$
\begin{aligned}
& 3 y-2 x+4=0 \\
& 3 y=2 x-4 \\
& y=\frac{2}{3} x-\frac{4}{3} \\
& \text { Gradient }=m=\frac{2}{3} \\
& y \text {-intercept }=c=-\frac{4}{3}
\end{aligned}
$$

1 Make y the subject of the equation.
2 Divide all the terms by three to get the equation in the form $y=\ldots$

3 In the form $y=m x+c$, the gradient is m and the y-intercept is c.

Example 3 Find the equation of the line which passes through the point $(5,13)$ and has gradient 3.

$$
\begin{aligned}
& m=3 \\
& y=3 x+c \\
& 13=3 \times 5+c \\
& 13=15+c \\
& c=-2 \\
& y=3 x-2
\end{aligned}
$$

1 Substitute the gradient given in the question into the equation of a straight line $y=m x+c$.
2 Substitute the coordinates $x=5$ and $y=13$ into the equation.
3 Simplify and solve the equation.

4 Substitute $c=-2$ into the equation $y=3 x+c$

Example 4 Find the equation of the line passing through the points with coordinates $(2,4)$ and $(8,7)$.

$$
\begin{aligned}
& x_{1}=2, x_{2}=8, y_{1}=4 \text { and } y_{2}=7 \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{8-2}=\frac{3}{6}=\frac{1}{2} \\
& y=\frac{1}{2} x+c \\
& 4=\frac{1}{2} \times 2+c \\
& c=3 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

1 Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out the gradient of the line.
2 Substitute the gradient into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates of either point into the equation.
4 Simplify and solve the equation.
5 Substitute $c=3$ into the equation $y=\frac{1}{2} x+c$

Practice

1 Find the gradient and the y-intercept of the following equations.
a $y=3 x+5$
b $\quad y=-\frac{1}{2} x-7$
c $\quad 2 y=4 x-3$
d $x+y=5$
e $\quad 2 x-3 y-7=0$
f $\quad 5 x+y-4=0$

Hint

Rearrange the equations
to the form $y=m x+c$

2 Copy and complete the table, giving the equation of the line in the form $y=m x+c$.

Gradient	\boldsymbol{y}-intercept	Equation of the line
5	0	
-3	2	
4	-7	

3 Find, in the form $a x+b y+c=0$ where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.
a gradient $-\frac{1}{2}, y$-intercept -7
b gradient 2, y-intercept 0
c \quad gradient $\frac{2}{3}, y$-intercept 4
d gradient $-1.2, y$-intercept -2

4 Write an equation for the line which passes though the point $(2,5)$ and has gradient 4.

5 Write an equation for the line which passes through the point $(6,3)$ and has gradient $-\frac{2}{3}$

6 Write an equation for the line passing through each of the following pairs of points.
a $(4,5),(10,17)$
b $(0,6),(-4,8)$
c $(-1,-7),(5,23)$
d $(3,10),(4,7)$

Extend

7 The equation of a line is $2 y+3 x-6=0$.
Write as much information as possible about this line.

Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation $y=m x+c$ has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to $y=2 x+4$ which passes through the point $(4,9)$.

$$
\begin{aligned}
& y=2 x+4 \\
& m=2 \\
& y=2 x+c \\
& 9=2 \times 4+c \\
& 9=8+c \\
& c=1 \\
& y=2 x+1
\end{aligned}
$$

1 As the lines are parallel they have the same gradient.
2 Substitute $m=2$ into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates into the equation $y=2 x+c$
4 Simplify and solve the equation.
5 Substitute $c=1$ into the equation $y=2 x+c$

Example 2 Find the equation of the line perpendicular to $y=2 x-3$ which passes through the point $(-2,5)$.

$$
\begin{aligned}
& y=2 x-3 \\
& m=2 \\
& -\frac{1}{m}=-\frac{1}{2} \\
& y=-\frac{1}{2} x+c \\
& 5=-\frac{1}{2} \times(-2)+c \\
& 5=1+c \\
& c=4 \\
& y=-\frac{1}{2} x+4
\end{aligned}
$$

1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
2 Substitute $m=-\frac{1}{2}$ into $y=m x+c$.
3 Substitute the coordinates $(-2,5)$
into the equation $y=-\frac{1}{2} x+c$
4 Simplify and solve the equation.
5 Substitute $c=4$ into $y=-\frac{1}{2} x+c$.

Example 3 A line passes through the points $(0,5)$ and $(9,-1)$.
Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$$
\begin{aligned}
& x_{1}=0, x_{2}=9, y_{1}=5 \text { and } y_{2}=-1 \\
& \begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-5}{9-0} \\
&=\frac{-6}{9}=-\frac{2}{3} \\
&-\frac{1}{m}=\frac{3}{2}
\end{aligned} \\
& y=\frac{3}{2} x+c \\
& \text { Midpoint }=\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right)=\left(\frac{9}{2}, 2\right) \\
& 2=\frac{3}{2} \times \frac{9}{2}+c \\
& c=-\frac{19}{4} \\
& y=\frac{3}{2} x-\frac{19}{4}
\end{aligned}
$$

1 Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out the gradient of the line.

2 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
3 Substitute the gradient into the equation $y=m x+c$.

4 Work out the coordinates of the midpoint of the line.

5 Substitute the coordinates of the midpoint into the equation.
6 Simplify and solve the equation.
7 Substitute $c=-\frac{19}{4}$ into the equation $y=\frac{3}{2} x+c$.

Practice

1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1 \quad(3,2)$
b $\quad y=3-2 x \quad(1,3)$
c $2 x+4 y+3=0 \quad(6,-3)$
d $2 y-3 x+2=0$

2 Find the equation of the line perpendicular to $y=\frac{1}{2} x-3$ which passes through the point $(-5,3)$.

Hint

If $m=\frac{a}{b}$ then the negative reciprocal $-\frac{1}{m}=-\frac{b}{a}$

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
a $y=2 x-6$
b $\quad y=-\frac{1}{3} x+\frac{1}{2}$
c $\quad x-4 y-4=0$
$(5,15)$
d $\quad 5 y+2 x-5=0$

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
a $(4,3),(-2,-9)$
b $\quad(0,3),(-10,8)$

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.
a $y=2 x+3$ $y=2 x-7$
b $y=3 x$
$2 x+y-3=0$
c $\quad y=4 x-3$
$4 y+x=2$
d $3 x-y+5=0$
$x+3 y=1$
e $\quad 2 x+5 y-1=0$
$y=2 x+7$
f $\quad 2 x-y=6$
$6 x-3 y+3=0$

6 The straight line \mathbf{L}_{1} passes through the points A and B with coordinates $(-4,4)$ and $(2,1)$, respectively.
a Find the equation of $\mathbf{L}_{\mathbf{1}}$ in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{2}}$ is parallel to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the point C with coordinates $(-8,3)$.
b Find the equation of \mathbf{L}_{2} in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{3}}$ is perpendicular to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the origin.
c Find an equation of \mathbf{L}_{3}

Pythagoras' theorem

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- In a right-angled triangle the longest side is called the hypotenuse.
- Pythagoras' theorem states that for a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$$
c^{2}=a^{2}+b^{2}
$$

Examples

Example 1
Calculate the length of the hypotenuse. Give your answer to 3 significant figures.

$$
c^{2}=a^{2}+b^{2}
$$

$$
\begin{aligned}
x^{2} & =5^{2}+8^{2} \\
x^{2} & =25+64 \\
x^{2} & =89 \\
x & =\sqrt{89} \\
x & =9.43398113 \ldots \\
x & =9.43 \mathrm{~cm}
\end{aligned}
$$

1 Always start by stating the formula for Pythagoras' theorem and labelling the hypotenuse c and the other two sides a and b.

2 Substitute the values of a, b and c into the formula for Pythagoras' theorem.
3 Use a calculator to find the square root.
4 Round your answer to 3 significant figures and write the units with your answer.

Example 2 Calculate the length x.
Give your answer in surd form.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& 10^{2}=x^{2}+4^{2} \\
& 100=x^{2}+16 \\
& x^{2}=84 \\
& x=\sqrt{84} \\
& x=2 \sqrt{21} \mathrm{~cm}
\end{aligned}
$$

1 Always start by stating the formula for Pythagoras' theorem.
2 Substitute the values of a, b and c into the formula for Pythagoras' theorem.

3 Simplify the surd where possible and write the units in your answer.

Practice

1 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

2 Work out the length of the unknown side in each triangle.
Give your answers in surd form.
a

b

c

d

3 Work out the length of the unknown side in each triangle.
Give your answers in surd form.
a

b

c

d

4 A rectangle has length 84 mm and width 45 mm .
Calculate the length of the diagonal of the rectangle.
Give your answer correct to 3 significant figures.

Hint

Draw a sketch of the rectangle.

Extend

5 A yacht is 40 km due North of a lighthouse.
A rescue boat is 50 km due East of the same lighthouse.
Work out the distance between the yacht and the rescue boat.
Give your answer correct to 3 significant figures.

Hint

Draw a diagram using the information given in the question.

6 Points A and B are shown on the diagram.
Work out the length of the line AB.
Give your answer in surd form.

7 A cube has length 4 cm .
Work out the length of the diagonal $A G$.
Give your answer in surd form.

Proportion

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- Two quantities are in direct proportion when, as one quantity increases, the other increases at the same rate. Their ratio remains the same.
- ' y is directly proportional to x ' is written as $y \propto x$. If $y \propto x$ then $y=k x$, where k is a constant.
- When x is directly proportional to y, the graph is a straight line passing through the origin.

- Two quantities are in inverse proportion when, as one quantity increases, the other decreases at the same rate.
- ' y is inversely proportional to x ' is written as $y \propto \frac{1}{x}$.

If $y \propto \frac{1}{x}$ then $y=\frac{k}{x}$, where k is a constant.

- When x is inversely proportional to y the graph is the same shape
 as the graph of $y=\frac{1}{x}$

Examples

Example $1 \quad y$ is directly proportional to x.
When $y=16, x=5$.
a Find x when $y=30$.
b Sketch the graph of the formula.

$$
\begin{aligned}
& \text { a } y \propto x \\
& y=k x \\
& 16=k \times 5 \\
& k=3.2 \\
& y=3.2 x \\
& \text { When } y=30 \text {, } \\
& 30=3.2 \times x \\
& x=9.375
\end{aligned}
$$

1 Write y is directly proportional to x, using the symbol \propto
2 Write the equation using k.
3 Substitute $y=16$ and $x=5$ into $y=k x$.
4 Solve the equation to find k.
5 Substitute the value of k back into the equation $y=k x$.

6 Substitute $y=30$ into $y=3.2 x$ and solve to find x when $y=30$.

| $\mathbf{b} \longrightarrow x$ | 7
 The graph of $y=3.2 x$ is a straight
 line passing through $(0,0)$ with a
 gradient of 3.2. |
| :--- | :--- | :--- |

Example $2 y$ is directly proportional to x^{2}.
When $x=3, y=45$.
a Find y when $x=5$.
b Find x when $y=20$.
a $y \propto x^{2}$

$$
\begin{aligned}
& y=k x^{2} \\
& 45=k \times 3^{2} \\
& k=5 \\
& y=5 x^{2}
\end{aligned}
$$

When $x=5$,

$$
y=5 \times 5^{2}
$$

$$
y=125
$$

b $20=5 \times x^{2}$
$x^{2}=4$
$x= \pm 2$

1 Write y is directly proportional to x^{2}, using the symbol \propto.

2 Write the equation using k.
3 Substitute $y=45$ and $x=3$ into $y=k x^{2}$.
4 Solve the equation to find k.
5 Substitute the value of k back into the equation $y=k x^{2}$.

6 Substitute $x=5$ into $y=5 x^{2}$ and solve to find y when $x=5$.

7 Substitute $y=20$ into $y=5 x^{2}$ and solve to find x when $y=4$.

Example $3 \quad P$ is inversely proportional to Q.
When $P=100, Q=10$.
Find Q when $P=20$.

P	$\propto \frac{1}{Q}$
P	$=\frac{k}{Q}$
100	$=\frac{k}{10}$
k	$=1000$
P	$=\frac{1000}{Q}$
20	$=\frac{1000}{Q}$
Q	$=\frac{1000}{20}=50$

1 Write P is inversely proportional to Q, using the symbol \propto.

2 Write the equation using k.
3 Substitute $P=100$ and $Q=10$.
4 Solve the equation to find k.
5 Substitute the value of k into $P=\frac{k}{Q}$
6 Substitute $P=20$ into $P=\frac{1000}{Q}$ and solve to find Q when $P=20$.

Practice

1 Paul gets paid an hourly rate. The amount of pay ($£ P$) is directly proportional to the number of hours (h) he works.
When he works 8 hours he is paid $£ 56$.
If Paul works for 11 hours, how much is he paid?

Hint

Substitute the values given for P and h into the formula to calculate k.
$2 x$ is directly proportional to y.
$x=35$ when $y=5$.
a Find a formula for x in terms of y.
b Sketch the graph of the formula.
c Find x when $y=13$.
d Find y when $x=63$.
$3 Q$ is directly proportional to the square of Z.
$Q=48$ when $Z=4$.
a Find a formula for Q in terms of Z.
b Sketch the graph of the formula.
c Find Q when $Z=5$.
d Find Z when $Q=300$.
$4 y$ is directly proportional to the square of x.
$x=2$ when $y=10$.
a Find a formula for y in terms of x.
b Sketch the graph of the formula.
c Find x when $y=90$.
$5 \quad B$ is directly proportional to the square root of C.
$C=25$ when $B=10$.
a Find B when $C=64$.
b Find C when $B=20$.
$6 \quad C$ is directly proportional to D.
$C=100$ when $D=150$.
Find C when $D=450$.
$7 y$ is directly proportional to x.
$x=27$ when $y=9$.
Find x when $y=3.7$.
$8 \quad m$ is proportional to the cube of n.
$m=54$ when $n=3$.
Find n when $m=250$.

Extend

$9 \quad s$ is inversely proportional to t.
a Given that $s=2$ when $t=2$, find a formula for s in terms of t.
b Sketch the graph of the formula.
c Find t when $s=1$.
$10 a$ is inversely proportional to b. $a=5$ when $b=20$.
a Find a when $b=50$.
b Find b when $a=10$.
$11 v$ is inversely proportional to w. $w=4$ when $v=20$.
a Find a formula for v in terms of w.
b Sketch the graph of the formula.
c Find w when $v=2$.
$12 L$ is inversely proportional to W.
$L=12$ when $W=3$.
Find W when $L=6$.
$13 s$ is inversely proportional to t.
$s=6$ when $t=12$.
a Find s when $t=3$.
b Find t when $s=18$.
$14 y$ is inversely proportional to x^{2}. $y=4$ when $x=2$.
Find y when $x=4$.
$15 y$ is inversely proportional to the square root of x.
$x=25$ when $y=1$.
Find x when $y=5$.
$16 a$ is inversely proportional to b.
$a=0.05$ when $b=4$.
a Find a when $b=2$.
b Find b when $a=2$.

Circle theorems

A LEVEL LINKS

Scheme of work: 2b. Circles - equation of a circle, geometric problems on a grid

Key points

- A chord is a straight line joining two points on the circumference of a circle.
So AB is a chord.

- A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°.

- Two tangents on a circle that meet at a point outside the circle are equal in length.
So AC = BC.

- The angle in a semicircle is a right angle.

So angle $\mathrm{ABC}=90^{\circ}$.

- When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle $\mathrm{AOB}=2 \times$ angle ACB .

- Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal.
So angle $\mathrm{ACB}=$ angle ADB and angle $\mathrm{CAD}=$ angle CBD .
- A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So $x+y=180^{\circ}$ and $p+q=180^{\circ}$.
- The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem.
So angle $\mathrm{BAT}=$ angle ACB .

Examples

Example 1 Work out the size of each angle marked with a letter.
Give reasons for your answers.

$$
\begin{aligned}
\text { Angle } a & =360^{\circ}-92^{\circ} \\
& =268^{\circ}
\end{aligned}
$$

as the angles in a full turn total 360°.

$$
\begin{aligned}
\text { Angle } \begin{aligned}
b & =268^{\circ} \div 2 \\
& =134^{\circ}
\end{aligned},=\text {. }
\end{aligned}
$$

as when two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.

1 The angles in a full turn total 360°.

2 Angles a and b are subtended by the same arc, so angle b is half of angle a.

Example 2 Work out the size of the angles in the triangle. Give reasons for your answers.

Angles are $90^{\circ}, 2 c$ and c.
$90^{\circ}+2 c+c=180^{\circ}$
$90^{\circ}+3 c=180^{\circ}$
$3 c=90^{\circ}$
$c=30^{\circ}$
$2 c=60^{\circ}$
The angles are $30^{\circ}, 60^{\circ}$ and 90° as the angle in a semi-circle is a right angle and the angles in a triangle total 180°.

1 The angle in a semicircle is a right angle.

2 Angles in a triangle total 180°.
3 Simplify and solve the equation.

Example 3 Work out the size of each angle marked with a letter.
Give reasons for your answers.

Angle $d=55^{\circ}$ as angles subtended by the same arc are equal.

Angle $e=28^{\circ}$ as angles subtended by the same arc are equal.

1 Angles subtended by the same arc are equal so angle 55° and angle d are equal.
2 Angles subtended by the same arc are equal so angle 28° and angle e are equal.

Example 4 Work out the size of each angle marked with a letter. Give reasons for your answers.

$$
\begin{aligned}
\text { Angle } f & =180^{\circ}-94^{\circ} \\
& =86^{\circ}
\end{aligned}
$$

as opposite angles in a cyclic quadrilateral total 180°.

1 Opposite angles in a cyclic quadrilateral total 180° so angle 94° and angle f total 180°.

$$
\begin{aligned}
\text { Angle } \begin{aligned}
g & =180^{\circ}-86^{\circ} \\
& =84^{\circ}
\end{aligned}, \quad \text {. }
\end{aligned}
$$

as angles on a straight line total 180°.
Angle $h=$ angle $f=86^{\circ}$ as angles subtended by the same arc are equal.

2 Angles on a straight line total 180° so angle f and angle g total 180°.

3 Angles subtended by the same arc are equal so angle f and angle h are equal.

Example 5 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $i=53^{\circ}$ because of the alternate segment theorem.

Angle $j=53^{\circ}$ because it is the alternate angle to 53°.

Angle $k=180^{\circ}-53^{\circ}-53^{\circ}$

$$
=74^{\circ}
$$

as angles in a triangle total 180°.

1 The angle between a tangent and chord is equal to the angle in the alternate segment.
2 As there are two parallel lines, angle 53° is equal to angle j because they are alternate angles.
3 The angles in a triangle total 180°, so $i+j+k=180^{\circ}$.

Example $6 \quad \mathrm{XZ}$ and YZ are two tangents to a circle with centre O . Prove that triangles XZO and YZO are congruent.

Angle $\mathrm{OXZ}=90^{\circ}$ and angle $\mathrm{OYZ}=90^{\circ}$ as the angles in a semicircle are right angles.

OZ is a common line and is the hypotenuse in both triangles.
$\mathrm{OX}=\mathrm{OY}$ as they are radii of the same circle.

So triangles XZO and YZO are congruent, RHS.

For two triangles to be congruent you need to show one of the following.

- All three corresponding sides are equal (SSS).
- Two corresponding sides and the included angle are equal (SAS).
- One side and two corresponding angles are equal (ASA).
- A right angle, hypotenuse and a shorter side are equal (RHS).

Practice

1 Work out the size of each angle marked with a letter.
Give reasons for your answers.
a

b

c

d

e

2 Work out the size of each angle marked with a letter. Give reasons for your answers.
a

b

c

Hint

The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g.
d

Hint

Angle 18° and angle h are subtended by the same arc.

3 Work out the size of each angle marked with a letter.
Give reasons for your answers.
a

b

Hint

One of the angles is in a semicircle.
c

d

4 Work out the size of each angle marked with a letter. Give reasons for your answers.
a

Hint

An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.
b

c

d

Hint

One of the angles is in a semicircle.

Extend

5 Prove the alternate segment theorem.

Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle θ is called the opposite
- the side next to the angle θ is called the adjacent.

adjacent
- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\text { adj }}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\mathrm{opp}}{\operatorname{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

	$\mathbf{0}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$			
$\boldsymbol{\operatorname { s i n }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1			
$\boldsymbol{\operatorname { c o s }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0			
$\boldsymbol{\operatorname { t a n }}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$				

Examples

Example 1 Calculate the length of side x.
Give your answer correct to 3 significant figures.

1 Always start by labelling the sides.

2 You are given the adjacent and the hypotenuse so use the cosine ratio.

3 Substitute the sides and angle into the cosine ratio.

4 Rearrange to make x the subject.
5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle x. Give your answer correct to 3 significant figures.

$\tan \theta=\frac{\text { opp }}{\text { adj }}$
$\tan x=\frac{3}{4.5}$
$x=\tan ^{-1}\left(\frac{3}{4.5}\right)$
$x=33.6900675 \ldots$
$x=33.7^{\circ}$

1 Always start by labelling the sides.

2 You are given the opposite and the adjacent so use the tangent ratio.
3 Substitute the sides and angle into the tangent ratio.

4 Use $\tan ^{-1}$ to find the angle.
5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

	1 Always start by labelling the sides.
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$	2 You are given the opposite and the adjacent so use the tangent ratio.
$\tan x=\frac{\sqrt{3}}{3}$	3 Substitute the sides and angle into the tangent ratio.
$x=30^{\circ}$	4 Use the table from the key points to find the angle.

Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

c

e

b

d

f

2 Calculate the size of angle x in each triangle.
Give your answers correct to 1 decimal place.
a

b

c

d

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ.
Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.
a

c

b

d

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.1 The cosine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B. c is the side opposite angle C .

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

Examples

Example 4 Work out the length of side w.
Give your answer correct to 3 significant figures.

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$w^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 45^{\circ}$
$w^{2}=33.80404051 \ldots$
$w=\sqrt{33.80404051}$
$w=5.81 \mathrm{~cm}$

1 Always start by labelling the angles and sides.

2 Write the cosine rule to find the side.

3 Substitute the values a, b and A into the formula.
4 Use a calculator to find w^{2} and then w.
5 Round your final answer to 3 significant figures and write the units in your answer.

Example 5 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

Practice

6 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

7 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

8 a Work out the length of WY. Give your answer correct to 3 significant figures.
b Work out the size of angle WXY. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4 a . Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.2 The sine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B. c is the side opposite angle C .

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side x.
Give your answer correct to 3 significant figures.

Example 7 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

1 Always start by labelling the angles and sides.

2 Write the sine rule to find the angle.
3 Substitute the values a, b, A and B into the formula.

4 Rearrange to make $\sin \theta$ the subject.
5 Use $\sin ^{-1}$ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice

9 Find the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

10 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

11 a Work out the length of QS.
Give your answer correct to 3 significant figures.
b Work out the size of angle RQS.
Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4 a . Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

- $\quad a$ is the side opposite angle A.
b is the side opposite angle B.
c is the side opposite angle C .
- The area of the triangle is $\frac{1}{2} a b \sin C$.

Examples

Example 8 Find the area of the triangle.

Area $=\frac{1}{2} a b \sin C$	$\mathbf{1}$ Always start by labelling the sides and angles of the triangle.
Area $=\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$	$\mathbf{2}$State the formula for the area of a triangle.
Area $=19.8 \mathrm{~cm}^{2}$	Substitute the values of a, b and C into the formula for the area of a triangle.
Use a calculator to find the area.	

Practice

12 Work out the area of each triangle.
Give your answers correct to 3 significant figures.
a

b

c

13 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$.
Work out the length of XZ.

Hint:

Rearrange the formula to make a side the subject.

Extend

14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.
a

b

c

d

15 The area of triangle ABC is $86.7 \mathrm{~cm}^{2}$.
Work out the length of BC.
Give your answer correct to 3 significant figures.

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives
Textbook: Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 1 Make t the subject of the formula $v=u+a t$.

$$
\begin{aligned}
& v=u+a t \\
& v-u=a t \\
& t=\frac{v-u}{a}
\end{aligned}
$$

1 Get the terms containing t on one side and everything else on the other side.

2 Divide throughout by a.

Example 2 Make t the subject of the formula $r=2 t-\pi t$.

$$
\begin{aligned}
r & =2 t-\pi t \\
r & =t(2-\pi) \\
t & =\frac{r}{2-\pi}
\end{aligned}
$$

1 All the terms containing t are already on one side and everything else is on the other side.
2 Factorise as t is a common factor.
3 Divide throughout by $2-\pi$.

Example 3 Make t the subject of the formula $\frac{t+r}{5}=\frac{3 t}{2}$.

$$
\begin{aligned}
& \frac{t+r}{5}=\frac{3 t}{2} \\
& 2 t+2 r=15 t \\
& 2 r=13 t \\
& t=\frac{2 r}{13}
\end{aligned}
$$

1 Remove the fractions first by multiplying throughout by 10 .
2 Get the terms containing t on one side and everything else on the other side and simplify.
3 Divide throughout by 13 .

Example 4 Make t the subject of the formula $r=\frac{3 t+5}{t-1}$.

$r=\frac{3 t+5}{t-1}$	$\mathbf{1}$Remove the fraction first by multiplying throughout by $t-1$.
$r(t-1)=3 t+5$	$\mathbf{2}$Expand the brackets.
$r t-r=3 t+5$	$\mathbf{3}$Get the terms containing t on one side and everything else on the other side.
$r t-3 t=5+r$	$\mathbf{4}$Factorise the LHS as t is a common factor.
$t(r-3)=5+r$	$\mathbf{5}$Divide throughout by $r-3$. $t=\frac{5+r}{r-3}$

Practice

Change the subject of each formula to the letter given in the brackets.
$1 \quad C=\pi d[d]$
$2 P=2 l+2 w \quad[w]$
$3 D=\frac{S}{T}$
$4 \quad p=\frac{q-r}{t} \quad[t]$
$5 \quad u=a t-\frac{1}{2} t \quad[t]$
$6 \quad V=a x+4 x \quad[x]$
$7 \quad \frac{y-7 x}{2}=\frac{7-2 y}{3}$
[y]
$8 \quad x=\frac{2 a-1}{3-a} \quad[a]$
$9 \quad x=\frac{b-c}{d} \quad[d]$
$10 \quad h=\frac{7 g-9}{2+g} \quad[g]$
$11 e(9+x)=2 e+1$
[e]
$12 y=\frac{2 x+3}{4-x} \quad[x]$

13 Make r the subject of the following formulae.
a $A=\pi r^{2}$
b $\quad V=\frac{4}{3} \pi r^{3}$
c $\quad P=\pi r+2 r$
d $\quad V=\frac{2}{3} \pi r^{2} h$

14 Make x the subject of the following formulae.
a $\frac{x y}{z}=\frac{a b}{c d}$
b $\quad \frac{4 \pi c x}{d}=\frac{3 z}{p y^{2}}$

15 Make $\sin B$ the subject of the formula $\frac{a}{\sin A}=\frac{b}{\sin B}$
16 Make $\cos B$ the subject of the formula $b^{2}=a^{2}+c^{2}-2 a c \cos B$.

Extend

17 Make x the subject of the following equations.
a $\quad \frac{p}{q}(s x+t)=x-1$
b $\quad \frac{p}{q}(a x+2 y)=\frac{3 p}{q^{2}}(x-y)$

Area under a graph

A LEVEL LINKS

Scheme of work: 7b. Definite integrals and areas under curves

Key points

- To estimate the area under a curve, draw a chord between the two points you are finding the area between and straight lines down to the horizontal axis to create a trapezium.
The area of the trapezium is an approximation for the area under a curve.

- The area of a trapezium $=\frac{1}{2} h(a+b)$

Examples

Example 1 Estimate the area of the region between the curve $y=(3-x)(2+x)$ and the x-axis from $x=0$ to $x=3$. Use three strips of width 1 unit.

\boldsymbol{x}	0	1	2	3
$y=(3-x)(2+\boldsymbol{x})$	6	6	4	0

Trapezium 1:
$a_{1}=6-0=6, b_{1}=6-0=6$
Trapezium 2:
$a_{2}=6-0=6, b_{2}=4-0=4$
Trapezium 3:
$a_{3}=4-0=4, a_{3}=0-0=0$

1 Use a table to record the value of y on the curve for each value of x.

2 Work out the dimensions of each trapezium. The distances between the y-values on the curve and the x-axis give the values for a.
(continued on next page)

$$
\begin{aligned}
& \frac{1}{2} h\left(a_{1}+b_{1}\right)=\frac{1}{2} \times 1(6+6)=6 \\
& \frac{1}{2} h\left(a_{2}+b_{2}\right)=\frac{1}{2} \times 1(6+4)=5 \\
& \frac{1}{2} h\left(a_{3}+b_{3}\right)=\frac{1}{2} \times 1(4+0)=2 \\
& \text { Area }=6+5+2=13 \text { units }^{2}
\end{aligned}
$$

3 Work out the area of each trapezium. $h=1$ since the width of each trapezium is 1 unit.

4 Work out the total area. Remember to give units with your answer.

Example 2 Estimate the shaded area.
Use three strips of width 2 units.

x	4	6	8	10
y	7	12	13	4

\boldsymbol{x}	4	6	8	10
y	7	6	5	4

Trapezium 1:
$a_{1}=7-7=0, b_{1}=12-6=6$
Trapezium 2:
$a_{2}=12-6=6, b_{2}=13-5=8$
Trapezium 3:
$a_{3}=13-5=8, a_{3}=4-4=0$
$\frac{1}{2} h\left(a_{1}+b_{1}\right)=\frac{1}{2} \times 2(0+6)=6$
$\frac{1}{2} h\left(a_{2}+b_{2}\right)=\frac{1}{2} \times 2(6+8)=14$
$\frac{1}{2} h\left(a_{3}+b_{3}\right)=\frac{1}{2} \times 2(8+0)=8$
Area $=6+14+8=28$ units 2

1 Use a table to record y on the curve for each value of x.

2 Use a table to record y on the straight line for each value of x.

3 Work out the dimensions of each trapezium. The distances between the y-values on the curve and the y-values on the straight line give the values for a.

4 Work out the area of each trapezium. $h=2$ since the width of each trapezium is 2 units.

5 Work out the total area. Remember to give units with your answer.

Practice

1 Estimate the area of the region between the curve $y=(5-x)(x+2)$ and the x-axis from $x=1$ to $x=5$.
Use four strips of width 1 unit.

Hint:

For a full answer, remember to include 'units ${ }^{2}$ '.

2 Estimate the shaded area shown on the axes.
Use six strips of width 1 unit.

3 Estimate the area of the region between the curve $y=x^{2}-8 x+18$ and the x-axis
from $x=2$ to $x=6$.
Use four strips of width 1 unit.

4 Estimate the shaded area.
Use six strips of width $\frac{1}{2}$ unit.

5 Estimate the area of the region between the curve $y=-x^{2}-4 x+5$ and the x-axis from $x=-5$ to $x=1$.
Use six strips of width 1 unit.

6 Estimate the shaded area.
Use four strips of equal width.

7 Estimate the area of the region between the curve $y=-x^{2}+2 x+15$ and the x-axis from $x=2$ to $x=5$.
Use six strips of equal width.

8 Estimate the shaded area.
Use seven strips of equal width.

Extend

9 The curve $y=8 x-5-x^{2}$ and the line $y=2$ are shown in the sketch.
Estimate the shaded area using six strips of equal width.

10 Estimate the shaded area using five strips of equal width.

