Write your name here

AS and A level Mathematics

Practice Paper

Pure Mathematics - Algebra (part 1)

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 17 questions in this question paper. The total mark for this paper is 80 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a $*$ sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
1*. Show that $\frac{2}{\sqrt{ } 12-\sqrt{ } 8}$ can be written in the form $\sqrt{ } a+\sqrt{ } b$, where a and b are integers.

(Total 5 marks)

2*. (a) Simplify

$$
\sqrt{50}-\sqrt{18}
$$

giving your answer in the form $a \sqrt{2}$, where a is an integer.
(b) Hence, or otherwise, simplify

$$
\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}
$$

giving your answer in the form $b \sqrt{c}$, where b and c are integers and $b \neq 1$
(Total 5 marks)

3*. (a) Write down the value of $32^{\frac{1}{5}}$
(b) Simplify fully $\left(32 x^{5}\right)^{-\frac{2}{5}}$

4*. (a) Evaluate $81^{\frac{3}{2}}$
(b) Simplify fully $x^{2}\left(4 x^{-\frac{1}{2}}\right)^{2}$

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
5*. (a) Find the value of $16^{-\frac{1}{4}}$
(b) Simplify $x\left(2 x^{-\frac{1}{4}}\right)^{4}$

6*. (a) Evaluate (32) ${ }^{\frac{3}{5}}$, giving your answer as an integer.
(2)
(b) Simplify fully $\left(\frac{25 x^{4}}{4}\right)^{-\frac{1}{2}}$

7*. (a) Find the value of $8^{\frac{5}{3}}$
(b) Simplify fully $\frac{\left(2 x^{\frac{1}{2}}\right)^{3}}{4 x^{2}}$
\qquad

8*. Express $8^{2 x+3}$ in the form 2^{y}, stating y in terms of x.
(Total 2 marks)
\qquad
9^{*}. Express $9^{3 x+1}$ in the form 3^{y}, giving y in the form $a x+b$, where a and b are constants.
(Total 2 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

10*. $\quad \mathrm{f}(x)=x^{2}-8 x+19$
(a) Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.

The curve C with equation $y=\mathrm{f}(x)$ crosses the y-axis at the point P and has a minimum point at the point Q.
(b) Sketch the graph of C showing the coordinates of point P and the coordinates of point Q.
(c) Find the distance $P Q$, writing your answer as a simplified surd.

11*. $\mathrm{f}(x)=x^{2}+(k+3) x+k$,
where k is a real constant.
(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k.
(b) Show that the discriminant of $\mathrm{f}(x)$ can be expressed in the form $(k+a)^{2}+b$, where a and b are integers to be found.
(c) Show that, for all values of k, the equation $\mathrm{f}(x)=0$ has real roots.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

12*.

$$
4 x-5-x^{2}=q-(x+p)^{2}
$$

where p and q are integers.
(a) Find the value of p and the value of q.
(b) Calculate the discriminant of $4 x-5-x^{2}$.
(c) Sketch the curve with equation $y=4 x-5-x^{2}$, showing clearly the coordinates of any points where the curve crosses the coordinate axes.

13*. Given that $y=2^{x}$,
(a) express 4^{x} in terms of y.
(b) Hence, or otherwise, solve

$$
8\left(4^{x}\right)-9\left(2^{x}\right)+1=0 .
$$

14*. Factorise completely $x-4 x^{3}$
\qquad

15*. Factorise fully $25 x-9 x^{3}$

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
16. $\mathrm{f}(x)=2 x^{3}-7 x^{2}-10 x+24$.
(a) Use the factor theorem to show that $(x+2)$ is a factor of $\mathrm{f}(x)$.
(2)
(b) Factorise $\mathrm{f}(x)$ completely.
17. $\mathrm{f}(x)=2 x^{3}-7 x^{2}+4 x+4$.
(a) Use the factor theorem to show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
(b) Factorise $\mathrm{f}(x)$ completely.

Write your name here

AS and A level Mathematics

Practice Paper Pure Mathematics - Algebra (part 2)

You must have: Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 12 questions in this question paper. The total mark for this paper is 85 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for all questions.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

1. Solve the simultaneous equations

$$
\begin{aligned}
x+y & =2 \\
4 y^{2}-x^{2} & =11
\end{aligned}
$$

(Total 7 marks)
2. Solve the simultaneous equations

$$
\begin{aligned}
& y+4 x+1=0 \\
& y^{2}+5 x^{2}+2 x=0
\end{aligned}
$$

(Total 6 marks)
3. Solve the simultaneous equations

$$
\begin{array}{r}
y-2 x-4=0 \\
4 x^{2}+y^{2}+20 x=0
\end{array}
$$

4. Given the simultaneous equations

$$
\begin{array}{r}
2 x+y=1 \\
x^{2}-4 k y+5 k=0
\end{array}
$$

where k is a non zero constant,
(a) show that $x^{2}+8 k x+k=0$.

Given that $x^{2}+8 k x+k=0$ has equal roots,
(b) find the value of k.
(c) For this value of k, find the solution of the simultaneous equations.
5. Find the set of values of x for which
(a) $4 x-5>15-x$,
(b) $x(x-4)>12$.
6. Find the set of values of x for which
(a) $2(3 x+4)>1-x$,
(b) $3 x^{2}+8 x-3<0$.
7. Find the set of values of x for which
(a) $3 x-7>3-x$,
(b) $x^{2}-9 x \leq 36$,
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
8. The equation $x^{2}+(k-3) x+(3-2 k)=0$, where k is a constant, has two distinct real roots.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}+2 k-3>0 \tag{3}
\end{equation*}
$$

(b) Find the set of possible values of k.
9. The equation

$$
(k+3) x^{2}+6 x+k=5, \text { where } k \text { is a constant, }
$$

has two distinct real solutions for x.
(a) Show that k satisfies

$$
k^{2}-2 k-24<0 .
$$

(b) Hence find the set of possible values of k.
10. The equation

$$
(p-1) x^{2}+4 x+(p-5)=0, \text { where } p \text { is a constant }
$$

has no real roots.
(a) Show that p satisfies $p^{2}-6 p+1>0$.
(b) Hence find the set of possible values of p.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

11. The straight line with equation $y=3 x-7$ does not cross or touch the curve with equation $y=2 p x^{2}-6 p x+4 p$, where p is a constant.
(a) Show that $4 p^{2}-20 p+9<0$.
(b) Hence find the set of possible values of p.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
12.

Figure 1

Figure 1 shows the plan of a garden. The marked angles are right angles.
The six edges are straight lines.
The lengths shown in the diagram are given in metres.
Given that the perimeter of the garden is greater than 40 m ,
(a) show that $x>1.7$.

Given that the area of the garden is less than $120 \mathrm{~m}^{2}$,
(b) form and solve a quadratic inequality in x.
(c) Hence state the range of the possible values of x.

Write your name here

AS and A level Mathematics
Practice Paper
Pure Mathematics - Binomial expansion

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 49 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2-3 x)^{5},
$$

giving each term in its simplest form.
2. Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\left(3 \frac{1}{3} x\right)^{5}
$$

giving each term in its simplest form.
(Total 4 marks)
3. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
\left(2-\frac{x}{4}\right)^{10}
$$

giving each term in its simplest form.
(Total 4 marks)
4. Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\left(1+\frac{3 x}{2}\right)^{8}
$$

giving each term in its simplest form.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
5. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(3+b x)^{5}
$$

where b is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^{2} is twice the coefficient of x,
(b) find the value of b.
6. (a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$
\left(1+\frac{x}{4}\right)^{8}
$$

giving each term in its simplest form.
(b) Use your expansion to estimate the value of $(1.025)^{8}$, giving your answer to 4 decimal places.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
7. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2-3 x)^{6}$, giving each term in its simplest form.
(b) Hence, or otherwise, find the first 3 terms, in ascending powers of x, of the expansion of

$$
\left(1+\frac{x}{2}\right)(2-3 x)^{6} .
$$

8. Given that $\binom{40}{4}=\frac{40!}{4!b!}$,
(a) write down the value of b.

In the binomial expansion of $(1+x)^{40}$, the coefficients of x^{4} and x^{5} are p and q respectively.
(b) Find the value of $\frac{q}{p}$.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
9. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2-9 x)^{4},
$$

giving each term in its simplest form.

$$
\mathrm{f}(x)=(1+k x)(2-9 x)^{4}, \quad \text { where } k \text { is a constant. }
$$

The expansion, in ascending powers of x, of $\mathrm{f}(x)$ up to and including the term in x^{2} is

$$
A-232 x+B x^{2}
$$

where A and B are constants.
(b) Write down the value of A.
(c) Find the value of k.
(d) Hence find the value of B.

Write your name here

AS and A level Mathematics

Practice Paper

Pure Mathematics - Coordinate geometry

You must have:

Total Marks
Mathematical Formulae and Statistical Tables (Pink)

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 12 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a $*$ sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
1*. The points P and Q have coordinates $(-1,6)$ and $(9,0)$ respectively.
The line l is perpendicular to $P Q$ and passes through the mid-point of $P Q$.
Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(Total 5 marks)

2*.

Figure 1
Figure 1 shows a right angled triangle $L M N$.
The points L and M have coordinates $(-1,2)$ and $(7,-4)$ respectively.
(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Given that the coordinates of point N are $(16, p)$, where p is a constant, and angle $L M N=90^{\circ}$,
(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,
(c) find the y coordinate of K.

Figure 1
The straight line l_{1}, shown in Figure 1, has equation $5 y=4 x+10$
The point P with x coordinate 5 lies on l_{1}
The straight line l_{2} is perpendicular to l_{1} and passes through P.
(a) Find an equation for l_{2}, writing your answer in the form $a x+b y+c=0$ where a, b and c are integers.

The lines l_{1} and l_{2} cut the x-axis at the points S and T respectively, as shown in Figure 1.
(b) Calculate the area of triangle SPT.

Figure 2

The line l_{1}, shown in Figure 2 has equation $2 x+3 y=26$.
The line l_{2} passes through the origin O and is perpendicular to l_{1}.
(a) Find an equation for the line l_{2}.

The line l_{2} intersects the line l_{1} at the point C. Line l_{1} crosses the y-axis at the point B as shown in Figure 2.
(b) Find the area of triangle $O B C$. Give your answer in the form $\frac{a}{b}$, where a and b are integers to be determined.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
5^{*}. The line L_{1} has equation $4 y+3=2 x$.
The point $A(p, 4)$ lies on L_{1}.
(a) Find the value of the constant p.

The line L_{2} passes through the point $C(2,4)$ and is perpendicular to L_{1}.
(b) Find an equation for L_{2} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{1} and the line L_{2} intersect at the point D.
(c) Find the coordinates of the point D.
(d) Show that the length of $C D$ is $\frac{3}{2} \sqrt{ } 5$.

A point B lies on L_{1} and the length of $A B=\sqrt{ } 80$.
The point E lies on L_{2} such that the length of the line $C D E=3$ times the length of $C D$.
(e) Find the area of the quadrilateral $A C B E$.

6*.

Figure 3
The points $P(0,2)$ and $Q(3,7)$ lie on the line l_{1}, as shown in Figure 3 .
The line l_{2} is perpendicular to l_{1}, passes through Q and crosses the x-axis at the point R, as shown in Figure 3.

Find
(a) an equation for l_{2}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers,
(b) the exact coordinates of R,
(c) the exact area of the quadrilateral $O R Q P$, where O is the origin.
(Total 12 marks)
7. A circle C has centre $(-1,7)$ and passes through the point $(0,0)$. Find an equation for C.
8.

Figure 4
The circle C has centre $P(7,8)$ and passes through the point $Q(10,13)$, as shown in Figure 4.
(a) Find the length $P Q$, giving your answer as an exact value.
(b) Hence write down an equation for C.

The line l is a tangent to C at the point Q, as shown in Figure 4 .
(c) Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(Total 8 marks)
9. The circle C has equation

$$
x^{2}+y^{2}+4 x-2 y-11=0
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds.
10. The circle C has equation

$$
x^{2}+y^{2}-10 x+6 y+30=0
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the y coordinates of the points where the circle C crosses the line with equation $x=4$, giving your answers as simplified surds.
(Total 7 marks)
11.

Figure 5
Figure 5 shows a circle C with centre Q and radius 4 and the point T which lies on C. The tangent to C at the point T passes through the origin O and $O T=6 \sqrt{5}$.

Given that the coordinates of Q are $(11, k)$, where k is a positive constant,
(a) find the exact value of k,
(b) find an equation for C.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
12. The circle C, with centre A, passes through the point P with coordinates $(-9,8)$ and the point Q with coordinates $(15,-10)$.

Given that $P Q$ is a diameter of the circle C,
(a) find the coordinates of A,
(b) find an equation for C.

A point R also lies on the circle C.
Given that the length of the chord $P R$ is 20 units,
(c) find the length of the shortest distance from A to the chord $P R$.

Give your answer as a surd in its simplest form.
(d) Find the size of the angle $A R Q$, giving your answer to the nearest 0.1 of a degree.

Write your name here

AS and A level Mathematics

Practice Paper Pure Mathematics - Differentiation

```
You must have:
Mathematical Formulae and Statistical Tables (Pink)
```

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 11 questions in this question paper. The total mark for this paper is 99 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
1*. Given

$$
y=\sqrt{x}+\frac{4}{\sqrt{x}}+4, \quad x>0
$$

find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=8$, writing your answer in the form $a \sqrt{2}$, where a is a rational number.
(Total 5 marks)

2*. Given that

$$
y=3 x^{2}+6 x^{\frac{1}{3}}+\frac{2 x^{3}-7}{3 \sqrt{x}}, \quad x>0
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Give each term in your answer in its simplified form.

3*. Differentiate with respect to x, giving answer in its simplest form

$$
\frac{x^{5}+6 \sqrt{x}}{2 x^{2}}
$$

4*.

$$
y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving each term in its simplest form.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

Figure 1

A manufacturer produces pain relieving tablets. Each tablet is in the shape of a solid circular cylinder with base radius $x \mathrm{~mm}$ and height hmm , as shown in Figure 1 .

Given that the volume of each tablet has to be $60 \mathrm{~mm}^{3}$,
(a) express h in terms of x,
(b) show that the surface area, $A \mathrm{~mm}^{2}$, of a tablet is given by $\mathrm{A}=2 \pi x^{2}+\frac{120}{x}$.

The manufacturer needs to minimise the surface area $A \mathrm{~mm}^{2}$, of a tablet.
(c) Use calculus to find the value of x for which A is a minimum.
(d) Calculate the minimum value of A, giving your answer to the nearest integer.
(e) Show that this value of A is a minimum.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

6. A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of $75 \pi \mathrm{~cm}^{3}$.

The cost of polishing the surface area of this glass cylinder is $£ 2$ per cm^{2} for the curved surface area and $£ 3$ per cm^{2} for the circular top and base areas.

Given that the radius of the cylinder is $r \mathrm{~cm}$,
(a) show that the cost of the polishing, $£ C$, is given by

$$
C=6 \pi r^{2}+\frac{300 \pi}{r} .
$$

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.
(c) Justify that the answer that you have obtained in part (b) is a minimum.

Figure 2

Figure 2 shows a flowerbed. Its shape is a quarter of a circle of radius x metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to x metres and width equal to y metres.

Given that the area of the flowerbed is $4 \mathrm{~m}^{2}$,
(a) show that

$$
y=\frac{16-\pi x^{2}}{8 x}
$$

(b) Hence show that the perimeter P metres of the flowerbed is given by the equation

$$
\begin{equation*}
P=\frac{8}{x}+2 x . \tag{3}
\end{equation*}
$$

(c) Use calculus to find the minimum value of P.
(d) Find the width of each rectangle when the perimeter is a minimum.

Give your answer to the nearest centimetre.

Figure 3

Figure 3 shows the plan of a pool.
The shape of the pool $A B C D E F A$ consists of a rectangle $B C E F$ joined to an equilateral triangle $B F A$ and a semi-circle $C D E$, as shown in Figure 3.
Given that $A B=x$ metres, $E F=y$ metres, and the area of the pool is $50 \mathrm{~m}^{2}$,
(a) show that

$$
\begin{equation*}
y=\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{ } 3) \tag{3}
\end{equation*}
$$

(b) Hence show that the perimeter, P metres, of the pool is given by

$$
\begin{equation*}
P=\frac{100}{x}+\frac{x}{4}(\pi+8-2 \sqrt{ } 3) \tag{3}
\end{equation*}
$$

(c) Use calculus to find the minimum value of P, giving your answer to 3 significant figures.
(d) Justify, by further differentiation, that the value of P that you have found is a minimum.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

9. The volume $V \mathrm{~cm}^{3}$ of a box, of height $x \mathrm{~cm}$, is given by

$$
V=4 x(5-x)^{2}, \quad 0<x<5 .
$$

(a) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(b) Hence find the maximum volume of the box.
(c) Use calculus to justify that the volume that you found in part (b) is a maximum.
10. Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after Joan places the cup on the table, the temperature, $\theta^{\circ} \mathrm{C}$, of the tea is modelled by the equation

$$
\theta=20+A \mathrm{e}^{-k t},
$$

where A and k are positive constants.
Given that the initial temperature of the tea was $90^{\circ} \mathrm{C}$,
(a) find the value of A.

The tea takes 5 minutes to decrease in temperature from $90^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
(b) Show that $k=\frac{1}{5} \ln 2$.
(c) Find the rate at which the temperature of the tea is decreasing at the instant when $t=10$. Give your answer, in ${ }^{\circ} \mathrm{C}$ per minute, to 3 decimal places.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
11. The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$
m=p \mathrm{e}^{-k t},
$$

where k and p are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
(a) Write down the value of p.
(b) Show that $k=\frac{1}{4} \ln 3$.
(c) Find the value of t when $\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.6 \ln 3$.

Write your name here

AS and A level Mathematics

Practice Paper Pure Mathematics - Differentiation

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
1*. The curve C_{1} has equation

$$
y=x^{2}(x+2)
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Sketch C_{1}, showing the coordinates of the points where C_{1} meets the x-axis.
(c) Find the gradient of C_{1} at each point where C_{1} meets the x-axis.

The curve C_{2} has equation

$$
y=(x-k)^{2}(x-k+2)
$$

where k is a constant and $k>2$.
(d) Sketch C_{2}, showing the coordinates of the points where C_{2} meets the x and y axes.
(Total 10 marks)

2*. The curve C has equation

$$
y=(x+1)(x+3)^{2} .
$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15$.

The point A, with x-coordinate -5 , lies on C.
(c) Find the equation of the tangent to C at A, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point B also lies on C. The tangents to C at A and B are parallel.
(d) Find the x-coordinate of B.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
3*. The curve C has equation

$$
y=\frac{\left(x^{2}+4\right)(x-3)}{2 x}, x \neq 0 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(b) Find an equation of the tangent to C at the point where $x=-1$.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(Total 10 marks)

4*. The curve C has equation $y=2 x^{3}+k x^{2}+5 x+6$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The point P, where $x=-2$, lies on C.
The tangent to C at the point P is parallel to the line with equation $2 y-17 x-1=0$.
Find
(b) the value of k,
(c) the value of the y coordinate of P,
(d) the equation of the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
5*. The curve C has equation

$$
y=2 x-8 \sqrt{ } x+5, \quad x \geq 0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving each term in its simplest form.

The point P on C has x-coordinate equal to $\frac{1}{4}$.
(b) Find the equation of the tangent to C at the point P, giving your answer in the form $y=a x+b$, where a and b are constants.

The tangent to C at the point Q is parallel to the line with equation $2 x-3 y+18=0$.
(c) Find the coordinates of Q.

6*. The curve C has equation

$$
y=\frac{1}{2} x^{3}-9 x^{\frac{3}{2}}+\frac{8}{x}+30, \quad x>0 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) Show that the point $P(4,-8)$ lies on C
(c) Find an equation of the normal to C at the point P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(Total 12 marks)

Figure 1

Figure 1 shows a sketch of the curve C with equation

$$
y=2-\frac{1}{x}, \quad x \neq 0
$$

The curve crosses the x-axis at the point A.
(a) Find the coordinates of A.
(b) Show that the equation of the normal to C at A can be written as

$$
\begin{equation*}
2 x+8 y-1=0 . \tag{6}
\end{equation*}
$$

The normal to C at A meets C again at the point B, as shown in Figure 1 .
(c) Find the coordinates of B.

Figure 2

A sketch of part of the curve C with equation

$$
y=20-4 x-\frac{18}{x}, \quad x>0
$$

is shown in Figure 2.
Point A lies on C and has an x coordinate equal to 2 .
(a) Show that the equation of the normal to C at A is $y=-2 x+7$.

The normal to C at A meets C again at the point B, as shown in Figure 2.
(b) Use algebra to find the coordinates of B.

Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$
y=4 x^{3}+9 x^{2}-30 x-8, \quad-0.5 \leqslant x \leqslant 2.2
$$

The curve has a turning point at the point A.
(a) Using calculus, show that the x coordinate of A is 1

The curve crosses the x-axis at the points $B(2,0)$ and $C\left(\frac{1}{4}, 0\right)$
The finite region R, shown shaded in Figure 3, is bounded by the curve, the line $A B$, and the x-axis.
(b) Use integration to find the area of the finite region R, giving your answer to 2 decimal places.

AS and A level Mathematics

Practice Paper
 Pure Mathematics - Exponentials and logarithms

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 12 questions in this question paper. The total mark for this paper is 79 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

1. Find the values of x such that

$$
2 \log _{3} x-\log _{3}(x-2)=2
$$

(Total 5 marks)
2. Given that $y=3 x^{2}$,
(a) show that $\log _{3} y=1+2 \log _{3} x$.
(b) Hence, or otherwise, solve the equation

$$
1+2 \log _{3} x=\log _{3}(28 x-9) .
$$

3. Given that $2 \log _{2}(x+15)-\log _{2} x=6$,
(a) show that $x^{2}-34 x+225=0$.
(b) Hence, or otherwise, solve the equation $2 \log _{2}(x+15)-\log _{2} x=6$.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
4. (i) Find the exact value of x for which

$$
\log _{2}(2 x)=\log _{2}(5 x+4)-3 .
$$

(ii) Given that

$$
\log _{a} y+3 \log _{a} 2=5
$$

express y in terms of a.
Give your answer in its simplest form.
5. (i) $2 \log (x+a)=\log \left(16 a^{6}\right)$, where a is a positive constant Find x in terms of a, giving your answer in its simplest form.
(ii) $\quad \log _{3}(9 y+b)-\log _{3}(2 y-b)=2$, where b is a positive constant

Find y in terms of b, giving your answer in its simplest form.
(Total 7 marks)
6. Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $5^{x}=10$,
(b) $\log _{3}(x-2)=-1$.
7. Find the exact solutions, in their simplest form, to the equations
(a) $\mathrm{e}^{3 x-9}=8$
(Total 3 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
8.

$$
\mathrm{f}(x)=-6 x^{3}-7 x^{2}+40 x+21
$$

(a) Use the factor theorem to show that $(x+3)$ is a factor of $\mathrm{f}(x)$
(b) Factorise $\mathrm{f}(x)$ completely.
(c) Hence solve the equation

$$
6\left(2^{3 y}\right)+7\left(2^{2 y}\right)=40\left(2^{y}\right)+21
$$

giving your answer to 2 decimal places.
9. (i) Use logarithms to solve the equation $8^{2 x+1}=24$, giving your answer to 3 decimal places.
(ii) Find the values of y such that

$$
\log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1, \quad y>\frac{3}{11}
$$

10. (i) Given that

$$
\log _{3}(3 b+1)-\log _{3}(a-2)=-1, \quad a>2,
$$

express b in terms of a.
(ii) Solve the equation

$$
2^{2 x+5}-7\left(2^{x}\right)=0,
$$

giving your answer to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
11. (i) Solve

$$
5^{y}=8
$$

giving your answers to 3 significant figures.
(2)
(ii) Use algebra to find the values of x for which

$$
\log _{2}(x+15)-4=\frac{1}{2} \log _{2} x
$$

12. (a) Sketch the graph of

$$
y=3^{x}, x \in \mathbb{R},
$$

showing the coordinates of any points at which the graph crosses the axes.
(b) Use algebra to solve the equation $3^{2 x}-9\left(3^{x}\right)+18=0$, giving your answers to 2 decimal places where appropriate.

Write your name here

AS and A level Mathematics

Practice Paper Pure Mathematics - Graphs and transformations

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 12 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for all questions.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Figure 1

Figure 1 shows a sketch of the curve C with equation

$$
y=\frac{1}{x}+1, \quad x \neq 0
$$

The curve C crosses the x-axis at the point A.
(a) State the x-coordinate of the point A.

The curve D has equation $y=x^{2}(x-2)$, for all real values of x.
(b) On a copy of Figure 1, sketch a graph of curve D. Show the coordinates of each point where the curve D crosses the coordinate axes.
(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$
x^{2}(x-2)=\frac{1}{x}+1
$$

2.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$. The curve has a maximum point A at $(-2,4)$ and a minimum point B at $(3,-8)$ and passes through the origin O.

On separate diagrams, sketch the curve with equation
(a) $y=3 \mathrm{f}(x)$,
(b) $y=\mathrm{f}(x)-4$.

On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the y-axis.

Figure 3

Figure 3 shows a sketch of the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=\frac{x}{x-2}, \quad x \neq 2 .
$$

The curve passes through the origin and has two asymptotes, with equations $y=1$ and $x=2$, as shown in Figure 1.
(a) In the space below, sketch the curve with equation $y=\mathrm{f}(x-1)$ and state the equations of the asymptotes of this curve.
(b) Find the coordinates of the points where the curve with equation $y=\mathrm{f}(x-1)$ crosses the coordinate axes.

Figure 4

Figure 4 shows a sketch of the curve with equation $y=\frac{2}{x}, x \neq 0$.
The curve C has equation $y=\frac{2}{x}-5, x \neq 0$, and the line l has equation $y=4 x+2$.
(a) Sketch and clearly label the graphs of C and l on a single diagram.

On your diagram, show clearly the coordinates of the points where C and l cross the coordinate axes.
(b) Write down the equations of the asymptotes of the curve C.
(c) Find the coordinates of the points of intersection of $y=\frac{2}{x}-5$ and $y=4 x+2$.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
5. (a) Factorise completely $9 x-4 x^{3}$.
(b) Sketch the curve C with equation

$$
y=9 x-4 x^{3}
$$

Show on your sketch the coordinates at which the curve meets the x-axis.

The points A and B lie on C and have x coordinates of -2 and 1 respectively.
(c) Show that the length of $A B$ is $k \sqrt{ } 10$, where k is a constant to be found.
6.

Figure 5
Figure 5 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$.
The curve C passes through the origin and through $(6,0)$.
The curve C has a minimum at the point $(3,-1)$.
On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(2 x)$,
(b) $y=-\mathrm{f}(x)$,
(c) $y=\mathrm{f}(x+p)$, where p is a constant and $0<p<3$.

On each diagram show the coordinates of any points where the curve intersects the x-axis and of any minimum or maximum points.
(Total 10 marks)
7.

Figure 6

Figure 6 shows a sketch of the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=(x+3)^{2}(x-1), \quad x \in \mathbb{R} .
$$

The curve crosses the x-axis at $(1,0)$, touches it at $(-3,0)$ and crosses the y-axis at $(0,-9)$.
(a) Sketch the curve C with equation $y=\mathrm{f}(x+2)$ and state the coordinates of the points where the curve C meets the x-axis.
(b) Write down an equation of the curve C.
(c) Use your answer to part (b) to find the coordinates of the point where the curve C meets the y-axis.
8. (a) On separate axes sketch the graphs of
(i) $y=-3 x+c$, where c is a positive constant,
(ii) $y=\frac{1}{x}+5$

On each sketch show the coordinates of any point at which the graph crosses the y-axis and the equation of any horizontal asymptote.

Given that $y=-3 x+c$, where c is a positive constant, meets the curve $y=\frac{1}{x}+5$ at two distinct points,
(b) show that $(5-c)^{2}>12$
9.

$$
4 x^{2}+8 x+3 \equiv a(x+b)^{2}+c
$$

(a) Find the values of the constants a, b and c.
(b) Sketch the curve with equation $y=4 x^{2}+8 x+3$, showing clearly the coordinates of any points where the curve crosses the coordinate axes.
10.

Figure 7

Figure 7 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=x^{2}(9-2 x)
$$

There is a minimum at the origin, a maximum at the point $(3,27)$ and C cuts the x-axis at the point A.
(a) Write down the coordinates of the point A.
(b) On separate diagrams sketch the curve with equation
(i) $y=\mathrm{f}(x+3)$,
(ii) $y=\mathrm{f}(3 x)$.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

The curve with equation $y=\mathrm{f}(x)+k$, where k is a constant, has a maximum point at $(3,10)$.
(c) Write down the value of k.
11.

Figure 8
Figure 8 shows a sketch of part of the curve $y=\mathrm{f}(x), x \in \mathbb{R}$, where

$$
\mathrm{f}(x)=(2 x-5)^{2}(x+3)
$$

(a) Given that
(i) the curve with equation $y=\mathrm{f}(x)-k, x \in \mathbb{R}$, passes through the origin, find the value of the constant k,
(ii) the curve with equation $y=\mathrm{f}(x+c), x \in \mathbb{R}$, has a minimum point at the origin, find the value of the constant c.
(b) Show that $\mathrm{f}^{\prime}(x)=12 x^{2}-16 x-35$

Points A and B are distinct points that lie on the curve $y=\mathrm{f}(x)$.
The gradient of the curve at A is equal to the gradient of the curve at B.
Given that point A has x coordinate 3
(c) find the x coordinate of point B.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
12. (a) Sketch the graphs of
(i) $y=x(x+2)(3-x)$,
(ii) $y=-\frac{2}{x}$.
showing clearly the coordinates of all the points where the curves cross the coordinate axes.
(b) Using your sketch state, giving a reason, the number of real solutions to the equation

$$
x(x+2)(3-x)+\frac{2}{x}=0 .
$$

Write your name here

$A S$ and A level Mathematics

Practice Paper Pure Mathematics - Integration

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 14 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a $*$ sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
1*. Find

$$
\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x
$$

giving each term in its simplest form.

2*. Find

$$
\int\left(2 x^{4}-\frac{4}{\sqrt{x}}+3\right) \mathrm{d} x
$$

giving each term in its simplest form.
(Total 4 marks)

3*. Find

$$
\int\left(2 x^{5}-\frac{1}{4 x^{3}}-5\right) \mathrm{d} x
$$

giving each term in its simplest form.
4. Use integration to find

$$
\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x
$$

giving your answer in the form $a+b \sqrt{ } 3$, where a and b are constants to be determined.
(Total 5 marks)

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$
y=\frac{1}{8} x^{3}+\frac{3}{4} x^{2}, \quad x \in \mathbb{R}
$$

The curve C has a maximum turning point at the point A and a minimum turning point at the origin O.

The line l touches the curve C at the point A and cuts the curve C at the point B.

The x coordinate of A is -4 and the x coordinate of B is 2 .

The finite region R, shown shaded in Figure 3, is bounded by the curve C and the line l.

Use integration to find the area of the finite region R.
(Total 7 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
6*.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{-\frac{1}{2}}+x \sqrt{ } x, \quad x>0
$$

Given that $y=37$ at $x=4$, find y in terms of x, giving each term in its simplest form.
(Total 7 marks)
\qquad

7*. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(2,10)$. Given that

$$
f^{\prime}(x)=3 x^{2}-3 x+5,
$$

find the value of $f(1)$.
(Total 5 marks)
\qquad

8*. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,25)$.
Given that $\mathrm{f}^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1, \quad x>0$,
(a) find $\mathrm{f}(x)$, simplifying each term.
(b) Find an equation of the normal to the curve at the point $(4,25)$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers to be found.
(Total 10 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
9*. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\mathrm{f}^{\prime}(x)=30+\frac{6-5 x^{2}}{\sqrt{x}}
$$

Given that the point $P(4,-8)$ lies on C,
(a) find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.
(b) Find $\mathrm{f}(x)$, giving each term in its simplest form.
(Total 9 marks)

10*. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,9)$.
Given that

$$
\mathrm{f}^{\prime}(x)=\frac{3 \sqrt{ } x}{2}-\frac{9}{4 \sqrt{ } x}+2, \quad x>0
$$

(a) find $\mathrm{f}(x)$, giving each term in its simplest form.

Point P lies on the curve.
The normal to the curve at P is parallel to the line $2 y+x=0$.
(b) Find the x-coordinate of P.
11.

Figure 2

Figure 2 shows the line with equation $y=10-x$ and the curve with equation $y=10 x-x^{2}-8$. The line and the curve intersect at the points A and B, and O is the origin.
(a) Calculate the coordinates of A and the coordinates of B.

The shaded area R is bounded by the line and the curve, as shown in Figure 2.
(b) Calculate the exact area of R.
\qquad

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
12. (a) Find

$$
\int 10 x\left(x^{\frac{1}{2}}-2\right) \mathrm{d} x
$$

giving each term in its simplest form.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$
y=10 x\left(x^{\frac{1}{2}}-2\right), \quad x \geq 0
$$

The curve C starts at the origin and crosses the x-axis at the point $(4,0)$.
The area, shown shaded in Figure 2, consists of two finite regions and is bounded by the curve C, the x-axis and the line $x=9$.
(b) Use your answer from part (a) to find the total area of the shaded regions.

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$
y=x(x+4)(x-2) .
$$

The curve C crosses the x-axis at the origin O and at the points A and B.
(a) Write down the x-coordinates of the points A and B.

The finite region, shown shaded in Figure 3, is bounded by the curve C and the x-axis.
(b) Use integration to find the total area of the finite region shown shaded in Figure 3.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
14.

Figure 3
Figure 3 shows a sketch of part of the curve with equation

$$
y=3 x-x^{\frac{3}{2}} \quad x \geq 0 .
$$

The finite region S, bounded by the x-axis and the curve, is shown shaded in Figure 3.
(a) Find

$$
\begin{equation*}
\int\left(3 x-x^{\frac{3}{2}}\right) \mathrm{d} x \tag{3}
\end{equation*}
$$

(b) Hence find the area of S.

AS and A level Mathematics

Practice Paper

Pure Mathematics - Trigonometry

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 6 questions in this question paper. The total mark for this paper is 49 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

1. Solve, for $0 \leq x<180^{\circ}$

$$
\cos \left(3 x-10^{\circ}\right)=-0.4
$$

giving your answers to 1 decimal place. You should show each step in your working.
(Total 7 marks)
2. (a) Show that the equation

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

can be written in the form

$$
\begin{equation*}
(3 \sin x-1)^{2}=2 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant x<360^{\circ}$,

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

giving your answers to 2 decimal places.
3. (a) Show that the equation

$$
\tan 2 x=5 \sin 2 x
$$

can be written in the form

$$
(1-5 \cos 2 x) \sin 2 x=0
$$

(b) Hence solve, for $0 \leq x \leq 180^{\circ}$

$$
\tan 2 x=5 \sin 2 x
$$

giving your answers to 1 decimal place where appropriate.
You must show clearly how you obtained your answers.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
4. (a) Show that the equation

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

can be written in the form

$$
\begin{equation*}
4 \sin ^{2} x+7 \sin x+3=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

giving your answers to 1 decimal place where appropriate.
5. (i) Solve, for $0 \leq \theta<360^{\circ}$, the equation $9 \sin \left(\theta+60^{\circ}\right)=4$, giving your answers to 1 decimal place. You must show each step of your working.
(ii) Solve, for $-\pi \leq x<\pi$, the equation $2 \tan x-3 \sin x=0$, giving your answers to 2 decimal places where appropriate.
[Solutions based entirely on graphical or numerical methods are not acceptable.]

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme
6. (i) Solve, for $-180^{\circ} \leq x<180^{\circ}$,

$$
\tan \left(x-40^{\circ}\right)=1.5
$$

giving your answers to 1 decimal place.
(ii) (a) Show that the equation

$$
\sin \theta \tan \theta=3 \cos \theta+2
$$

can be written in the form

$$
4 \cos ^{2} \theta+2 \cos \theta-1=0
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$,

$$
\sin \theta \tan \theta=3 \cos \theta+2
$$

showing each stage of your working.

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

Question	Scheme	Marks
1	$\begin{array}{rlr} \left\{\frac{2}{\sqrt{12}-\sqrt{8}\}}\right\} & =\frac{2}{(\sqrt{12}-\sqrt{8})} \times \frac{(\sqrt{12}+\sqrt{8})}{(\sqrt{12}+\sqrt{8})} & \text { Writing this is sufficient for } \\ & =\frac{\{2(\sqrt{12}+\sqrt{8})\}}{12-8} & \text { M1 } \\ & =\frac{2(2 \sqrt{3}+2 \sqrt{2})}{12-8} & \text { This mark can be implied } \\ & =\sqrt{3}+\sqrt{2} & \end{array}$	M1 A1 B1 B1 A1 cso
		(5 marks)
2(a)	$\begin{gathered} \sqrt{50}-\sqrt{18}=5 \sqrt{2}-3 \sqrt{2} \\ =2 \sqrt{2} \end{gathered}$	M1 A1 (2)
2(b)	$\begin{aligned} & \frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{" 2 " \sqrt{2}} \\ = & \frac{12 \sqrt{3}}{" 2 " \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{12 \sqrt{6}}{4} \\ = & 3 \sqrt{6} \text { or } b=3, c=6 \end{aligned}$	M1 dM1 A1 (3)
		(5 marks)
3(a)	$32^{\frac{1}{5}}=2$	B1
3(b)	For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^{2}$ or 0.25 as coefficient of x^{k}, for any value of k including $k=0$ Correct index for x so $A x^{-2}$ or $\frac{A}{x^{2}}$ o.e. for any value of A $=\frac{1}{4 x^{2}} \text { or } 0.25 x^{-2}$	M1 B1 A1 cao (3)
		(4 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

Question	Scheme	Marks
4(a)	$\begin{aligned} & 81^{\frac{3}{2}}=\left(81^{\frac{1}{2}}\right)^{3}=9^{3} \text { or } 81^{\frac{3}{2}}=\left(81^{3}\right)^{\frac{1}{2}}=(531441)^{\frac{1}{2}} \\ &=729 \end{aligned}$	M1 A1 (2)
4(b)	$\begin{gathered} \left(4 x^{-\frac{1}{2}}\right)^{2}=16 x^{-\frac{2}{2}} \text { or } \frac{16}{x} \quad \text { or equivalent } \\ x^{2}\left(4 x^{-\frac{1}{2}}\right)^{2}=16 x \end{gathered}$	
		(4 marks)
5(a)	$\begin{aligned} & 16^{-\frac{1}{4}}=2 \text { or } \frac{1}{16^{-\frac{1}{4}}} \text { or better } \\ & \left.\left(16^{-\frac{1}{4}}=\right) \frac{1}{2} \text { or } 0.5 \text { (ignore } \pm\right) \end{aligned}$	M1 A1 (2)
5(b)	$\begin{aligned} & \left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4} x^{-\frac{4}{4}} \text { or } \frac{2^{4}}{x^{-\frac{4}{4}}} \text { or equivalent } \\ & x\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4} \text { or } 16 \end{aligned}$	M1 A1 cao (2)
		(4 marks)
6(a)	$\begin{aligned} \left\{(32)^{\frac{3}{5}}\right\} & =(\sqrt[5]{32})^{3} \text { or } \sqrt[5]{(32)^{3}} \text { or } 2^{3} \text { or } \sqrt[5]{32768} \\ & =8 \end{aligned}$	M1 A1 (2)
6(b)	$\begin{aligned} \left\{\left(\frac{25 x^{4}}{4}\right)^{-\frac{1}{2}}\right\} & =\left(\frac{4}{25 x^{4}}\right)^{\frac{1}{2}} \text { or }\left(\frac{5 x^{2}}{2}\right)^{-1} \text { or } \frac{1}{\left(\frac{25 x^{4}}{4}\right)^{\frac{1}{2}}} \\ & =\frac{2}{5 x^{2}} \text { or } \frac{2}{5} x^{-2} \end{aligned}$	M1 A1
		(4 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

Question	Scheme	Marks
7(a)	$\begin{aligned} & 8^{\frac{1}{3}}=2 \text { or } 8^{5}=32768 \\ & \left(8^{\frac{5}{3}}=\right) 32 \end{aligned}$	M1 A1 cao (2)
7(b)	$\begin{aligned} & \left(2 x^{\frac{1}{2}}\right)^{3}=2^{3} x^{\frac{3}{2}} \\ & \frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{-\frac{1}{2}} \text { or } \frac{2}{\sqrt{x}} \end{aligned}$	M1 dM1A1 (3)
8	$\left(8^{2 x+3}=\left(2^{3}\right)^{2 x+3}\right)=2^{3(2 x+3)}$ or $2^{a x+b}$ with $a=6$ or $b=9$ $=2^{6 x+9}$ or $=2^{3(2 x+3)}$ as final answer with no errors or $(y=) 6 x+9$ or $3(2 x+$ 3)	M1 A1
		(2 marks)
9	$\begin{aligned} & 9^{3 x+1}=\text { for example }\left.3^{2(3 x+1)} \text { or }\left(3^{2}\right)^{3 x+1} \text { or }(3 \times 3)^{3 x+1} \text { or } 3^{2} \times\left(3^{2}\right)^{3 x+1}\right)^{3 x} \text { or }\left(9^{\frac{1}{2}} 3^{y x+1} \times 3^{3 x+1} \text { or } 9^{\frac{1}{2} y}\right. \\ & \text { or } y=2(3 x+1) \\ &=3^{6 x+2} \text { or } y=6 x+2 \text { or } a=6, b=2 \end{aligned}$	M1 A1
		(2 marks)
10(a)	$\mathrm{f}(x)=(x-4)^{2}+3$	M1A1 (2)
10(b)		B1 B1 B1 (3)
10(c)	$\begin{aligned} & P Q^{2}=(0-4)^{2}+(19-3)^{2} \\ & P Q=\sqrt{4^{2}+16^{2}} \\ & P Q=4 \sqrt{17} \end{aligned}$	M1 A1 A1 (3)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

Question	Scheme	Marks
		(8 marks)
11(a)	Discriminant: $b^{2}-4 a c=(k+3)^{2}-4 k$ or equivalent	M1A1 (2)
11(b)	$(k+3)^{2}-4 k=k^{2}+2 k+9=(k+1)^{2}+8$	M1A1 (2)
11(c)	For real roots, $b^{2}-4 a c \geq 0$ or $b^{2}-4 a c>0$ or $(k+1)^{2}+8>0$ $(k+1)^{2} \geq 0$ for all k, so $b^{2}-4 a c>0$, so roots are real for all k (or equiv.)	M1 A1 cso (2)
		(6 marks)
12(a)	$\begin{aligned} & 4 x-5-x^{2}=q-(x-p)^{2}, p, q \text { are integers. } \\ & \left\{4 x-5-x^{2}=\right\}-\left[x^{2}-4 x+5\right]=-\left[(x-2)^{2}-4+5\right]=-\left[(x-2)^{2}+1\right] \\ & =-1-(x-2)^{2} \end{aligned}$	M1 A1A1 (3)
12(b)	$\begin{aligned} \left\{" b^{2}-4 a c "\right. & =\} 4^{2}-4(-1)(-5) \quad\{=16-20\} \\ & =-4 \end{aligned}$	M1 A1 (2)
12(c)	 Correct \cap shape Maximum within the $4^{\text {th }}$ quadrant Curve cuts through -5 or $(0,-5)$ marked on the y-axis	M1 A1 B1 (3)
		(8 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

Question	Scheme	Marks
13(a)	$\left(4^{x}=\right) y^{2}$ Allow y^{2} or $y \times y$ or " y squared" " $4^{x}=$ " not required	B1
		(1)
13(b)	$\begin{aligned} & 8 y^{2}-9 y+1=(8 y-1)(y-1)=0 \Rightarrow y=\ldots \text { or } \\ & \left(8\left(2^{x}\right)-1\right)\left(\left(2^{x}\right)-1\right)=0 \Rightarrow 2^{x}=\ldots \\ & 2^{x}(\text { or } y)=\frac{1}{8}, 1 \end{aligned}$	M1 A1 M1A1
		(4)
		(5 marks)
14	$x\left(1-4 x^{2}\right)$ Accept $x\left(-4 x^{2}+1\right)$ or $-x\left(4 x^{2}-1\right)$ or $-x\left(-1+4 x^{2}\right)$ or even $4 x\left(\frac{1}{4}-x^{2}\right)$ or equivalent quadratic (or initial cubic) into two brackets $x(1-2 x)(1+2 x) \text { or }-x(2 x-1)(2 x+1) \text { or } x(2 x-1)(-2 x-1)$	B1 M1 A1
		(3 marks)
15	$\begin{aligned} & 25 x-9 x^{3}=x\left(25-9 x^{2}\right) \\ & \left(25-9 x^{2}\right)=(5+3 x)(5-3 x) \\ & 25 x-9 x^{3}=x(5+3 x)(5-3 x) \end{aligned}$	B1 M1 A1
		(3 marks)
16(a)	$\begin{aligned} & f(-2)=2 \cdot(-2)^{3}-7 \cdot(-2)^{2}-10 \cdot(-2)+24 \\ & =0 \text { so }(x+2) \text { is a factor } \end{aligned}$	M1 A1 (2)
16(b)	$\begin{aligned} & \mathrm{f}(x)=(x+2)\left(2 x^{2}-11 x+12\right) \\ & \mathrm{f}(x)=(x+2)(2 x-3)(x-4) \end{aligned}$	M1A1 dM1A1 (4)
		(6 marks)

AS and A level Mathematics Practice Paper - Algebra (part 1) - Mark scheme

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C1 2012	3	2.2	Indices and surds
2	C1 2016	3	2.2	Manipulation of surds
3	C1 2014	2	2.1	Laws of indices for rational exponents
4	C1 June 2014R	2	2.1	Laws of indices
5	C1 Jan 2011	1	2.1	Indices and surds
6	C1 2012	2	2.1	Indices and surds
7	C1 2013	3	2.1	Laws of Indices for all rational components
8	C1 Jan 2013	2	2.1	Indices and surds
9	C1 2016	2	2.1	Laws of indices for rational exponents
10	C1 2017	5	2.3	Completing the square, graph
11	C1 2011	7	2.3	Quadratics
12	C1 2012	8	2.3	Quadratics
13	C1 2015	7	2.1 and 2.3	Laws of indices, solution of quadratic equations
14	C1 Jan 2013	1	2.6	Polynomials, Factor theorem
15	C1 June 2014R	1	2.6	Cubic factorisation
16	C2 2012	4	2.6	Polynomials, Factor theorem
17	C2 2014	2	2.6	Polynomials, factor theorem

Question	Scheme		Marks
1	Either $\begin{aligned} & y^{2}=4-4 x+x^{2} \\ & 4\left(4-4 x+x^{2}\right)-x^{2}=11 \end{aligned}$ or $4(2-x)^{2}-x^{2}=11$ $\begin{aligned} & 3 x^{2}-16 x+5=0 \\ & (3 x-1)(x-5)=0, \quad x=\ldots \\ & x=\frac{1}{3} \quad x=5 \\ & y=\frac{5}{3} \quad y=-3 \end{aligned}$	Or $\begin{aligned} & x^{2}=4-4 y+y^{2} \\ & 4 y^{2}-\left(4-4 y+y^{2}\right)=11 \end{aligned}$ or $\begin{aligned} & 4 y^{2}-(2-y)^{2}=11 \\ & 3 y^{2}+4 y-15=0 \quad \text { Correct } \end{aligned}$ 3 terms $\begin{aligned} & (3 y-5)(y+3)=0, \quad y=\ldots \\ & y=\frac{5}{3} \quad y=-3 \\ & x=\frac{1}{3} \quad x=5 \end{aligned}$	M1 M1 A1 M1 A1 M1A1
			(7 marks)
2	$y=2 x+4 \Rightarrow 4 x^{2}+(2 x+4)^{2}+20 x=0$ or $\begin{aligned} & 2 x=y-4 \text { or } x=\frac{y-4}{2} \\ & \Rightarrow(y-4)^{2}+y^{2}+10(y-4)=0 \\ & 8 x^{2}+36 x+16=0 \end{aligned}$ or $2 y^{2}+2 y-24=0$ $(4)(2 x+1)(x+4)=0 \Rightarrow x=\ldots$ or (2) $\begin{gathered} y+4)(y-3)=0 \Rightarrow y=\ldots \\ x=-0.5, x=-4 \end{gathered}$ or $y=-4, y=3$ Sub into $y=2 x+4$ or Sub into $x=\frac{y-4}{2}$		M1 M1 A1 M1 A1 cso M1

AS and A level Mathematics Practice Paper - Algebra (part 2) - Mark scheme

Question	Scheme	Marks
	$\begin{gathered} y=3, y=-4 \\ \text { and } \\ x=-4, \quad x=-0.5 \end{gathered}$	A1
		(7 marks)
3	$\begin{aligned} & y=-4 x-1 \\ & \Rightarrow(-4 x-1)^{2}+5 x^{2}+2 x=0 \\ & 21 x^{2}+10 x+1=0 \\ & (7 x+1)(3 x+1)=0 \Rightarrow(x=)-\frac{1}{7},-\frac{1}{3} \\ & y=-\frac{3}{7}, \frac{1}{3} \end{aligned}$	M1 A1 dM1 A1 M1 A1
		(6 marks)
4(a)	$\begin{aligned} & x^{2}-4 k(1-2 x)+5 k(=0) \\ & \text { So } x^{2}+8 k x+k=0 * \end{aligned}$	M1 A1cso (2)
4(b)	$\begin{aligned} & (8 k)^{2}-4 k \\ & k=\frac{1}{16}(\mathrm{oe}) \end{aligned}$	M1A1 A1 (3)
4(c)	$\begin{aligned} & x^{2}+\frac{1}{2} x+\frac{1}{16}=0 \text { so }\left(x+\frac{1}{4}\right)^{2}=0 \Rightarrow x= \\ & x=-\frac{1}{4}, y=1 \frac{1}{2} \end{aligned}$	M1 A1A1 (3)
		(8 marks)
5(a)	$\begin{aligned} 5 x>20 & \\ & \underline{x>4} \end{aligned}$	M1 A1 (2)
5(b)	$\begin{aligned} & x^{2}-4 x-12=0 \\ & \begin{array}{l} (x+2)(x-6)[=0] \\ x=6,-2 \\ x<-2, x>6 \end{array} \end{aligned}$	M1 A1 M1A1ft (4)
		(6 marks)

AS and A level Mathematics Practice Paper - Algebra (part 2) - Mark scheme

Question	Scheme	Marks
6(a)	$\begin{aligned} & 6 x+x>1-8 \\ & x>-1 \end{aligned}$	M1 A1 (2)
6(b)	$\begin{aligned} & (x+3)(3 x-1)[=0] \Rightarrow x=-3 \text { and } \frac{1}{3} \\ & -3<x<\frac{1}{3} \end{aligned}$	M1A1 M1A1ft (4)
		(6 marks)
7(a)	$\begin{aligned} 3 x-7 & >3-x \\ 4 x & >10 \\ x & >2.5, \quad x>\frac{5}{2}, \quad \frac{5}{2}<x \quad \text { o.e. } \end{aligned}$	M1 A1 (2)
7(b)	Obtain $x^{2}-9 x-36$ and attempt to solve $x^{2}-9 x-36=0$ $\begin{aligned} & \text { e.g. }(x-12)(x+3)=0 \text { so } x=, \quad \text { or } x=\frac{9 \pm \sqrt{81+144}}{2} \\ & 12,-3 \\ & -3 \leq x \leq 12 \end{aligned}$	M1 A1 M1A1 (4)
7(c)	$2.5<x \leq 12$	A1cso (1)
		(7 marks)
8(a)	$\begin{aligned} & b^{2}-4 a c=(k-3)^{2}-4(3-2 k) \\ & k^{2}-6 k+9-4(3-2 k)>0 \text { or }(k-3)^{2}-12+8 k>0 \text { or better } \\ & k^{2}+2 k-3>0 \end{aligned}$	M1 M1 A1 cso (3)
8(b)	$(k+3)(k-1)[=0]$ Critical values are $\quad k=1$ or $k=-3$ (choosing "outside" region) $k>1$ or $k<-3$	M1 A1 M1 A1 cao (4)
		(7 marks)

AS and A level Mathematics Practice Paper - Algebra (part 2) - Mark scheme

Question	Scheme	Marks
9(a)	Method 1: Attempts $b^{2}-4 a c$ for $a=(k+3), b=6$ and their $c \quad c \neq k$ $\begin{aligned} & b^{2}-4 a c=6^{2}-4(k+3)(k-5) \\ & \left(b^{2}-4 a c=\right)-4 k^{2}+8 k+96 \end{aligned}$ or $-\left(b^{2}-4 a c=\right) \quad 4 k^{2}-8 k-96$ (with no prior algebraic errors) As $b^{2}-4 a c>0$, then $-4 k^{2}+8 k+96>0 \quad$ and so, $k^{2}-2 k-24<0$ Method 2: Considers $b^{2}>4 a c$ for $a=(k+3), b=6$ and their $c \quad c \neq k$ $\begin{aligned} & 6^{2}>4(k+3)(k-5) \\ & 4 k^{2}-8 k-96<0 \text { or }-4 k^{2}+8 k+96>0 \text { or } 9>(k+3)(k-5) \end{aligned}$ (with no prior algebraic errors) and so, $k^{2}-2 k-24<0$ following correct work	M1 A1 B1 A1 M1 A1 B1 A1 (4)
9(b)	Attempts to solve $k^{2}-2 k-24=0$ to give $k=$ (\Rightarrow Critical values, $k=6,-4$.) $k^{2}-2 k-24<0$ gives $-4<k<6$	
		(7 marks)
10(a)	$\begin{aligned} & b^{2}-4 a c<0 \Rightarrow \text { e.g. } \\ & 4^{2}-4(p-1)(p-5)<0 \text { or } \\ & 0>4^{2}-4(p-1)(p-5) \text { or } \\ & 4^{2}<4(p-1)(p-5) \text { or } \\ & 4(p-1)(p-5)>4^{2} \\ & 4<p^{2}-6 p+5 \\ & p^{2}-6 p+1>0 \end{aligned}$	M1 A1 A1* (3)
10(b)	$\begin{aligned} & p^{2}-6 p+1=0 \Rightarrow p=\ldots \\ & p=3 \pm \sqrt{8} \\ & p<3-\sqrt{8} \text { or } p>3+\sqrt{8} \end{aligned}$	M1 A1 M1A1 (4)

AS and A level Mathematics Practice Paper - Algebra (part 2) - Mark scheme

Question	Scheme	Marks
		(7 marks)

AS and A level Mathematics Practice Paper - Algebra (part 2) - Mark scheme

Question	Scheme	Marks
11(a)	$2 p x^{2}-6 p x+4 p "=" 3 x-7$ or $y=2 p\left(\frac{y+7}{3}\right)^{2}-6 p\left(\frac{y+7}{3}\right)+4 p$ Examples $\begin{aligned} & \quad 2 p x^{2}-6 p x+4 p-3 x+7(=0), \quad-2 p x^{2}+6 p x-4 p+3 x-7(=0) \\ & \begin{aligned} 2 p\left(\frac{y+7}{3}\right)^{2}-6 p\left(\frac{y+7}{3}\right)+4 p-y(=0), \quad 2 p y^{2}+(10 p-9) y+8 p(=0) \\ y=2 p x^{2}-6 p x+4 p-3 x+7 \end{aligned} \\ & \text { E.g. } b^{2}-4 a c=(-6 p-3)^{2}-4(2 p)(4 p+7), b^{2}-4 a c=(10 p-9)^{2}-4(2 p)(8 p) \\ & 4 p^{2}-20 p+9<0 * \end{aligned}$	M1 dM1 ddM1 A1* (4)
11(b)	$(2 p-9)(2 p-1)=0 \Rightarrow p=\ldots$ to obtain $p=$ $p=\frac{9}{2}, \quad \frac{1}{2}$ $\frac{1}{2}<p<4 \frac{1}{2}$	M1 A1 M1 A1
		(8 marks)
12(a)	$\begin{aligned} P & =20 x+6 \text { o.e } \\ 20 x+6 & >40 \Rightarrow x> \\ x & >1.7 \end{aligned}$	
12(b)	Mark parts (b) and (c) together $\begin{aligned} & A=2 x(2 x+1)+2 x(6 x+3)=16 x^{2}+8 x \\ & 16 x^{2}+8 x-120<0 \end{aligned}$ Try to solve their $2 x^{2}+x-15=0 \quad$ e.g. $(2 x-5)(x+3)=0$ so $x=$ Choose inside region $-3<x<\frac{5}{2}$ or $0<x<\frac{5}{2}$ (as x is a length)	B1 M1 M1 M1 A1 (5)
12(c)	$1.7<x<\frac{5}{2}$	B1cao (1)
		(9 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C1 2011	4	2.4	Simultaneous equations
2	C1 2016	5	2.3 and 2.4	Simultaneous equations - one linear, one quadra
3	C1 2015	2	2.3 and 2.4	Solution of simultaneous equations
4	C1 2013	10	2.4	Simultaneous equations, one linear one quadrati
5	C1 Jan 2012	3	2.5	Inequalities
6	C1 2013	5	2.5	Inequalities
7	C1 2014	3	2.5	Solution of linear and quadratic inequalities
8	C1 Jan 2011	8	2.3 and 2.5	Quadratics, Inequalities, Polynomials, Factor thec
9	C1 Jan 2013	9	2.3 and 2.5	Quadratics, Inequalities
10	C1 2015	5	2.3 and 2.5	Discriminant, solution of inequality by formula
11	C1 2016	8	$2.3,2.4,2.5,2.6$ and 2.7	Inequalities and discriminant
12	C1 June 2014R	6	2.5	Solution of linear and quadratic inequalities
1	C1 2011	4	2.4	Simultaneous equations
2	C1 2016	5	2.3 and 2.4	Simultaneous equations - one linear, one quadra

AS and A level Mathematics Practice Paper - Binomial expansion - Mark scheme

Question	Scheme	Marks
1	$\begin{aligned} {\left[(2-3 x)^{5}\right] } & =\ldots \quad+\binom{5}{1} 2^{4}(-3 x)+\binom{5}{2} 2^{3}(-3 x)^{2}+. ., \ldots \ldots . \\ & =32,-240 x,+720 x^{2} \end{aligned}$	B1 A1 A1
		(4 marks)
2	$\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5} \\ & 3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3} x\right)+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3} x\right)^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3} x\right)^{3} \ldots \end{aligned}$ First term of 243 $\begin{aligned} & \left({ }^{5} C_{1} \times \ldots \times x\right)+\left({ }^{5} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{5} C_{3} \times \ldots \times x^{3}\right) \ldots \\ & =(243 \ldots)-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3} \ldots \\ & =(243 \ldots)-135 x+30 x^{2}-\frac{10}{3} x^{3} . . \end{aligned}$	B1 M1 A1 A1
		(4 marks)
3	$\begin{aligned} & \left(2-\frac{x}{4}\right)^{10} \\ & 2^{10}+\underline{\left.\underline{(10} \begin{array}{c} 10 \\ 1 \end{array}\right)} 2^{9}\left(-\frac{1}{4} \underline{\underline{x}}\right)+\underline{\underline{\binom{10}{2}}} 2^{8}\left(-\frac{1}{4} \underline{\underline{x}}\right)^{2}=+\ldots \\ & =\underline{1024}-1280 x+720 x^{2} \end{aligned}$	
		(4 marks)
4	$\begin{aligned} & 1+12 x \\ & \ldots+\frac{8(7)}{2!}\left(\frac{3 x}{2}\right)^{2}+\frac{8(7)(6)}{3!}\left(\frac{3 x}{2}\right)^{3}+\ldots \\ & \ldots+{ }^{8} \mathrm{C}_{2}\left(\frac{3 x}{2}\right)^{2}+{ }^{8} \mathrm{C}_{3}\left(\frac{3 x}{2}\right)^{8}+\ldots \\ & \ldots+63 x^{2}+189 x^{3}+\ldots \end{aligned}$	B1 M1 A1A1
		(4 marks)

AS and A level Mathematics Practice Paper - Binomial expansion - Mark scheme

AS and A level Mathematics Practice Paper - Binomial expansion - Mark scheme

Question	Scheme	Marks
7(a)	$\begin{aligned} & (2-3 x)^{6}=64+\ldots \\ & \left\{(2-3 x)^{6}\right\}=(2)^{6}+\underline{{ }^{6} \mathrm{C}_{1}(2)^{5}}(-3 \underline{x})+{ }^{6} \mathrm{C}_{2}(2)^{4}(-3 \underline{x})^{2}+\ldots \\ & =64-576 x+2160 x^{2}+\ldots \end{aligned}$	B1 M1 A1A1 (4)
7(b)	$\begin{aligned} & \left(1+\frac{x}{2}\right)(64-576 x+\ldots) \text { or }\left(1+\frac{x}{2}\right)\left(64-576 x+2160 x^{2}+\ldots\right) \text { or } \\ & \left(1+\frac{x}{2}\right) 64-\left(1+\frac{x}{2}\right) 576 x \text { or }\left(1+\frac{x}{2}\right) 64-\left(1+\frac{x}{2}\right) 576 x+\left(1+\frac{x}{2}\right) 2160 x^{2} \\ & \quad \text { or } 64+32 x,-576 x-288 x^{2}, 2160 x^{2}+1080 x^{3} \text { are fine. } \\ & =64-544 x+1872 x^{2}+\ldots \end{aligned}$	A1A1 (3)
		(7 marks)
8(a)	$\binom{40}{4}=\frac{40!}{4!b!} ;(1+x)^{n}$ coefficients of x^{4} and x^{5} are p and q respectively $b=36$ Candidates should usually "identify" two terms as their p and q respectively	B1 (1)
8(b)	Term 1: $\binom{40}{4}$ or ${ }^{40} C_{4}$ or $\frac{40!}{436!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Term 2: $\binom{40}{5}$ or ${ }^{40} C_{5}$ or $\frac{40!}{4!35!}$ or $\frac{40(39)(38)(37)(36)}{5!}$ or 658008 Hence, $\frac{q}{p}=\frac{658008}{91390}\left\{=\frac{36}{5}=7.2\right\}$ Any one of Term 1 or Term 2 correct (lgnore the label of p and/or q) Both of them correct. (Ignore the label of p and/or q) $\frac{658008}{91390} \text { oe }$	M1 A1 A1 oe cso
		(4 marks)

AS and A level Mathematics Practice Paper - Binomial expansion - Mark scheme

Question	Scheme	Marks
9(a)	$(2-9 x)^{4}=2^{4}+{ }^{4} C_{1} 2^{3}(-9 x)+{ }^{4} C_{2} 2^{2}(-9 x)^{2},$ (b) $\mathrm{f}(x)=(1+k x)(2-9 x)^{4}=A-232 x+B x^{2}$ First term of 16 in their final series At least one of $\left({ }^{4} C_{1} \times \ldots \times x\right)$ or $\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)$ $=(16)-288 x+1944 x^{2}$	B1 M1 A1 A1 (4)
9(b)	$A=" 16 "$	B1ft (1)
9(c)	$\begin{aligned} & \left\{(1+k x)(2-9 x)^{4}\right\}=(1+k x)\left(16-288 x+\left\{1944 x^{2}+\ldots\right\}\right) \\ & x \text { terms: }-288 x+16 k x=-232 x \\ & \text { giving, } 16 k=56 \Rightarrow k=\frac{7}{2} \end{aligned}$	M1 A1
9(d)	x^{2} terms: $1944 x^{2}-288 k x^{2}$ So, $B=1944-288\left(\frac{7}{2}\right) ;=1944-1008=936$	
		(9 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C2 2012	1	4.1	Binomial expansion
2	C2 2017	1	4.1	Binomial expansion
3	C2 2015	1	4.1	Binomial expansion
4	C2 June 2014R	1	4.1	Binomial expansion
5	C2 2011	Q2	4.1	Binomial expansion
6	C2 Jan 2012	Q3	4.1	Binomial expansion
7	C2 2014	3	4.1	Binomial expansion
8	C2 Jan 2011	5	4.1	Binomial expansion
9	C2 2016	5	4.1	Binomial expansion

Question	Scheme	Marks
1	Mid-point of $P Q$ is $(4,3)$ $P Q: m=\frac{0-6}{9-(-1)},\left(=-\frac{3}{5}\right)$ Gradient perpendicular to $P Q=-\frac{1}{m} \quad\left(=\frac{5}{3}\right)$ $y-3=\frac{5}{3}(x-4)$ $5 x-3 y-11=0$ or $3 y-5 x+11=0$ or multiples e.g. $10 x-6 y-22=0$	B1 B1 M1 M1 A1 (5 marks)
2(a)	$\begin{gathered} \text { Method } \\ 1 \text { Method } 2 \\ \begin{array}{c} \text { gradient }=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{2-(-4)}{-1-7},=-\frac{3}{4} \quad \frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}, \text { so } \frac{y-y_{1}}{6}=\frac{x-x_{1}}{-8} \\ y-2=-\frac{3}{4}(x+1) \text { or } y+4=-\frac{3}{4}(x-7) \text { or } y=\text { their' }-\frac{3}{4} ' x+c \\ \Rightarrow \pm(4 y+3 x-5)=0 \end{array} \end{gathered}$ Method 3: Substitute $x=-1, y=2$ and $x=7, y=-4$ into $a x+b y+c=0$ $-a+2 b+c=0 \text { and } 7 a-4 b+c=0$ Solve to obtain $a=3, b=4$ and $c=-5$ or multiple of these numbers	M1 A1 M1 A1 M1 A1 M1 A1 (4)
2(b)	Attempts gradient $L M \times$ gradient $M N=-1$ so Or $(y+4)=\frac{4}{3}(x-7)$ equation with x $-\frac{3}{4} \times \frac{p+4}{16-7}=-1$ or $\frac{p+4}{16-7}=\frac{4}{3} \quad=16$ substituted $p+4=\frac{9 \times 4}{3} \Rightarrow p=\ldots \quad, p=8 \quad \text { So } y=, \quad y=8$	M1 M1 A1 (3)
2(c)	$\begin{aligned} \text { Either }(y=) p+6 & \text { or } 2+p+4 \end{aligned} \begin{aligned} & \text { Or use } 2 \text { perpendicular line equations } \\ & \text { through } L \text { and } N \text { and solve for } y \end{aligned}$	M1 A1 (2)
		(9 marks)

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
3(a)	Gradient of $l_{1}=\frac{4}{5}$ oe $\begin{aligned} & \text { Point } P=(5,6) \\ & -\frac{5}{4}=\frac{y-" 6 "}{x-5} \end{aligned}$ or $y-" 6 "=-\frac{5}{4}(x-5)$ or " 6 " $=-\frac{5}{4}(5)+c \Rightarrow c=\ldots$ $5 x+4 y-49=0$	B1 B1 M1 A1 (4)
3(b)	$y=0 \Rightarrow 5 x+4(0)-49=0 \Rightarrow x=\ldots$ or $y=0 \Rightarrow 5(0)=4 x+10 \Rightarrow x=\ldots$ $y=0 \Rightarrow 5 x+4(0)-49=0 \Rightarrow x=\ldots$ and $y=0 \Rightarrow 5(0)=4 x+10 \Rightarrow x=\ldots$ Method 1: $\frac{1}{2} S T \times{ }^{\prime \prime} 6 "$ $\frac{1}{2} \times\left({ }^{\prime} 9.8^{\prime}--^{\prime}-2.5^{\prime}\right) \times{ }^{\prime} 6^{\prime}=\ldots$ Method 2: $\frac{1}{2} S P \times P T$ $\begin{gathered} \frac{1}{2} \times \sqrt{\left(5-'^{\prime}-2.5^{\prime}\right)^{2}+\left('^{\prime}\right)^{2}} \times \sqrt{\left('^{\prime} 9.8^{\prime}-5\right)^{2}+\left('^{\prime}\right)^{2}}=\ldots \\ \left(=\frac{1}{2} \times \frac{3 \sqrt{41}}{2} \times \frac{6 \sqrt{41}}{5}\right) \end{gathered}$ Method 3: 2 Triangles $\frac{1}{2} \times\left(5+{ }^{\prime} 2.5 '\right) \times{ }^{\prime} 6^{\prime}+\frac{1}{2} \times\left('^{\prime} 9.8^{\prime}-5\right) \times{ }^{\prime} 6^{\prime}=\ldots$ Method 4: Shoelace method $\frac{1}{2}\left\|\begin{array}{cccc} 5 & 9.8 & -2.5 & 5 \\ 6 & 0 & 0 & 6 \end{array}\right\|=\frac{1}{2}\|(0+0-15)-(58.8+0+0)\|=\frac{1}{2}\|-73.8\|=\ldots$ Method 5: Trapezium +2 triangles $\frac{1}{2} \times\left({ }^{\prime} 2.5^{\prime}\right) \times{ }^{\prime} 2^{\prime}+\frac{1}{2}\left(" 2 "+" 6^{\prime \prime}\right) \times 5+\frac{1}{2} \times\left(" 9.8^{\prime \prime}-5^{\prime}\right) \times{ }^{\prime} 6^{\prime}=\ldots$	ddM1
		(4)
		(8 marks)

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
5(a)	$L_{1}: 4 y+3=2 x \Rightarrow y=\frac{1}{2} x-\frac{3}{4} ; \quad A(p, 4)$ lies on L_{1}. $\{p=\} 9 \frac{1}{2}$ or $\frac{19}{2}$ or 9.5	$\begin{array}{rr}\text { B1 } \\ \\ & \text { (1) }\end{array}$
5(b)	$\{4 y+3=2 x\} \Rightarrow y=\frac{2 x-3}{4} \Rightarrow m\left(L_{1}\right)=\frac{1}{2} \text { or } \frac{2}{4}$ So $m\left(L_{2}\right)=-2$ $L_{2}: y-4=-2(x-2)$ $L_{2}: 2 x+y-8=0$ or $L_{2}: 2 x+1 y-8=0$	M1 A1 B1ft M1 A1 (5)
5(c)	$\begin{aligned} & \left\{L_{1}=L_{2} \Rightarrow\right\} 4(8-2 x)+3=2 x \text { or }-2 x+8=\frac{1}{2} x-\frac{3}{4} \\ & x=3.5, y=1 \end{aligned}$	M1 A1 A1 cso (3)
5(d)	$\begin{align*} C D^{2} & =\left(" 3.5^{\prime}-2\right)^{2}+(" 1 "-4)^{2} \\ C D & =\sqrt{(" 3.5 "-2)^{2}+(" 1 "-4)^{2}} \\ & =\sqrt{1.5^{2}+3^{2}}=1.5 \sqrt{1^{2}+2^{2}}=1.5 \sqrt{5} \text { or } \frac{3}{2} \sqrt{5} \tag{*} \end{align*}$	"M1" A1 ft A1 cso
5(e)	Area $=$ triangle $A B C+$ triangle $A B E$ $\begin{aligned} =\frac{1}{2} & \times \frac{3}{2} \sqrt{5} \times \sqrt{80}+\frac{1}{2} \times 3 \sqrt{5} \times \sqrt{80} \\ & =\frac{3}{4} \sqrt{5} \times 4 \sqrt{5}+\frac{3}{2} \sqrt{5} \times 4 \sqrt{5} \\ & =\frac{3}{4}(20)+\frac{3}{2}(20) \\ & =45 \end{aligned}$ Finding the area of any triangle.	M1 B1 A1 (3)
		(15 marks)

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
6(a)	Gradient of l_{1} is $\frac{7-2}{3-0}\left(=\frac{5}{3}\right)$ $\begin{aligned} & m\left(l_{2}\right)=-1 \div \text { their } \frac{5}{3} \\ & y-7=--\frac{3}{5} "(x-3) \end{aligned}$ or $\begin{gathered} y="-\frac{3}{5} " x+c, 7="-\frac{3}{5} "(3)+c \Rightarrow c=\frac{44}{5} \\ 3 x+5 y-44=0 \end{gathered}$	B1 M1 M1A1ft A1
6(b)	When $y=0 \quad x=\frac{44}{3}$	M1 A1 (2)
6(c)	Correct attempt at finding the area of any one of the triangles or one of the trapezia. A correct numerical expression for the area of one triangle or one trapezium for their coordinates. Combines the correct areas together correctly Correct numerical expression for the area of $O R Q P$ Correct exact area e.g. $54 \frac{1}{3}, \frac{163}{3}, \frac{326}{6}, 54.3$ or any exact equivalent	M1 A1ft dM1 A1 A1
		(12 marks)
7	The equation of the circle is $(x+1)^{2}+(y-7)^{2}=\left(r^{2}\right)$ The radius of the circle is $\sqrt{(-1)^{2}+7^{2}}=\sqrt{50}$ or $5 \sqrt{2}$ or $r^{2}=50$ So $(x+1)^{2}+(y-7)^{2}=50$ or equivalent	M1 A1 M1 A1
		(4 marks)

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
8(a)	$\begin{aligned} & \{P Q=\} \sqrt{(7-10)^{2}+(8-13)^{2}} \text { or } \sqrt{(10-7)^{2}+(13-8)^{2}} \\ & \{P Q\}=\sqrt{34} \end{aligned}$	M1 A1
		(2)
8(b)	$(x-7)^{2}+(y-8)^{2}=34\left(\right.$ or $\left.(\sqrt{34})^{2}\right)$	M1 A1 oe
		(2)
8(c)	$\begin{aligned} & \{\text { Gradient of radius }\}=\frac{13-8}{10-7} \text { or } \frac{5}{3} \\ & \text { Gradient of tangent }=-\frac{1}{m}\left(=-\frac{3}{5}\right) \\ & y-13=-\frac{3}{5}(x-10) \\ & 3 x+5 y-95=0 \end{aligned}$	B1
		M1
		M1
		A1
		(4)
		(8 marks)
9(a)	$\begin{aligned} & x^{2}+y^{2}+4 x-2 y-11=0 \\ & \left\{\underline{(x+2)^{2}-4}+\underline{\left.\underline{(y-1)^{2}-1}-11=0\right\}}\right. \end{aligned}$ ($\pm 2, \pm 1$), see notes. Centre is $(-2,1)$. $(-2,1)$	M1 A1 cao
		(2)
9(b)	$\begin{array}{lr} (x+2)^{2}+(y-1)^{2}=11+1+4 \\ \text { So } r=\sqrt{11+1+4} \Rightarrow r=4 & r=\sqrt{11 \pm " 1 " \pm " 4 "} \\ & 4 \text { or } \sqrt{16} \text { (Award AO for } \pm 4) . \end{array}$	M1
		A1
9(c)	When $x=0, y^{2}-2 y-11=0$ Putting $x=0$ in C or their C. $y=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-11)}}{2(1)}\left\{=\frac{2 \pm \sqrt{48}}{2}\right\}$ Attempt to use formula or a method of completing the square in order to find $y=\ldots$ So, $y=1 \pm 2 \sqrt{3}$ $1 \pm 2 \sqrt{3}$	M1
		A1 aef
		M1
		A1 cao cso
		(4)
		(8 marks)

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
10(a)	$x^{2}+y^{2}-10 x+6 y+30=0$ Uses any appropriate method to find the coordinates of the centre, e.g. achieves $\underline{(x \pm 5)^{2}}+\underline{(y \pm 3)^{2}}=\ldots$. Accept $(\pm 5, \pm 3)$ as indication of this. Centre is $(5,-3)$.	M1 A1 (2)
10(b)	Way 1 Uses $(x \pm " 5 ")^{2}-" 5^{2} "+(y \pm " 3 ")^{2}-" 3^{2} "+30=0$ to give $r=\sqrt{" 25 "+" 9 "-30}$ or $r^{2}=" 25 "+" 9 "-30(n o t 30-25-9)$ $r=2$ Way 2 Using $\sqrt{g^{2}+f^{2}-c}$ from $x^{2}+y^{2}+2 g x+2 f y+c=0 \quad$ (Needs formula stated or correct working) $r=2$	A1cao M1 A1 (2)
10(c)	Way 1 Use $x=4$ in an equation of circle and obtain equation in y only e.g. $(4-5)^{2}+(y+3)^{2}=4$ or $4^{2}+y^{2}-10 \times 4+6 y+30=0$ Solve their quadratic in y and obtain two solutions for y e.g. $(y+3)^{2}=3$ or $y^{2}+6 y+6=0$ so $y=-3 \pm \sqrt{3}$ Way 2 Divide triangle $P T Q$ and use Pythagoras with " $r^{\prime 2}-(" 5 "-4)^{2}=h^{2}$ Find h and evaluate " $-3 " \pm h$ May recognise (1, V3, 2) triangle So $y=-3 \pm \sqrt{3}$	M1 dM1 A1 M1 dM1 A1
		(3)
		(7 marks)

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
11(a)	Mark (a) and (b) together $\begin{aligned} & O Q^{2}=(6 \sqrt{5})^{2}+4^{2} \text { or } O Q=\sqrt{(6 \sqrt{5})^{2}+4^{2}} \quad\{=14\} \\ & y_{Q}=\sqrt{14^{2}-11^{2}} \\ & =\sqrt{75} \text { or } 5 \sqrt{3} \end{aligned}$	M1 dM1 A1cso (3)
11(b)	$(x-11)^{2}+(y-5 \sqrt{3})^{2}=16$	M1A1 (2)
		(5 marks)
12(a)	$A\left(\frac{-9+15}{2}, \frac{8-10}{2}\right)=A(3,-1)$	M1A1 (2)
12(b)	$\begin{aligned} & (-9-3)^{2}+(8+1)^{2} \text { or } \sqrt{(-9-3)^{2}+(8+1)^{2}} \\ & \text { or }(15-3)^{2}+(-10+1)^{2} \text { or } \sqrt{(15-3)^{2}+(-10+1)^{2}} \end{aligned}$ Uses Pythagoras correctly in order to find the radius. Must clearly be identified as the radius and may be implied by their circle equation. Or $(15+9)^{2}+(-10-8)^{2} \text { or } \sqrt{(15+9)^{2}+(-10-8)^{2}}$ Uses Pythagoras correctly in order to find the diameter. Must clearly be identified as the diameter and may be implied by their circle equation. This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation) Allow this mark if there is a correct statement involving the radius or the diameter but must be seen in (b) $\begin{aligned} & (x-3)^{2}+(y+1)^{2}=225\left(\text { or }(15)^{2}\right) \\ & (x-3)^{2}+(y+1)^{2}=225 \end{aligned}$	M1 M1 A1 (3)
12(c)	$\begin{aligned} & \text { Distance }=\sqrt{15^{2}-10^{2}} \\ & \{=\sqrt{125}\}=5 \sqrt{5} \end{aligned}$	M1 A1 (2)
12(d)	$\begin{gathered} \sin (A R Q)=\frac{20}{30} \text { or } A R Q=90-\cos ^{-1}\left(\frac{10}{15}\right) \\ A R Q=41.8103 \ldots \quad \text { awrt } 41.8 \end{gathered}$	M1 A1

AS and A level Mathematics Practice Paper - Coordinate geometry - Mark scheme

Question	Scheme	Marks
		(2)
		(9 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C1 2011	3	3.1	Straight lines
2	C1 2017	8	3.1	Straight-line graph (perpendicular gradients)
3	C1 June 2014R	7	3.1	Equation of straight line and condition for perpendiculari
4	C1 2014	9	3.1	Coordinate geometry, perpendicularity
5	C1 2012	9	$3.1,2.4$	Straight lines, Indices and surds, Simultaneous equations
6	C1 2016	10	3.1	Lines, perpendicular
7	C2 Jan 2012	Q2	3.2	Circles
8	C2 2016	3	$3.1,3.2$	Circles
9	C2 2011	Q4	$2.3,3.2$	Circles
10	C2 2017	5	3.2	Circles
11	C2 2014	9	3.2	Circles
12	C2 June 2014R	10	3.2	Circles

Question	Scheme	Marks
1	$\begin{aligned} & y=\sqrt{x}+\frac{4}{\sqrt{x}}+4=x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}+4 \\ & x^{n} \rightarrow x^{n-1} \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) \frac{1}{2} x^{-\frac{1}{2}}+4 \times-\frac{1}{2} x^{-\frac{3}{2}} \\ & \left(=\frac{1}{2} x^{-\frac{1}{2}}-2 x^{-\frac{3}{2}}\right) \\ & x=8 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} 8^{-\frac{1}{2}}+4 \times-\frac{1}{2} 8^{-\frac{3}{2}} \\ & =\frac{1}{2 \sqrt{8}}-\frac{2}{(\sqrt{8})^{3}}=\frac{1}{2 \sqrt{8}}-\frac{2}{8 \sqrt{8}}=\frac{1}{8 \sqrt{2}}=\frac{1}{16} \sqrt{2} \end{aligned}$	M1 A1 M1 B1 A1
		(5 marks)
2	$\begin{aligned} & \frac{2 x^{3}-7}{3 \sqrt{x}}=\frac{2 x^{3}}{3 \sqrt{x}}-\frac{7}{3 \sqrt{x}}=\frac{2}{3} x^{\frac{5}{2}}-\frac{7}{3} x^{-\frac{1}{2}} \\ & x^{n} \rightarrow x^{n-1} \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 6 x+2 x^{-\frac{2}{3}}+\frac{5}{3} x^{\frac{3}{2}}+\frac{7}{6} x^{-\frac{3}{2}} \end{aligned}$	M1 M1 A1A1 A1A1
		(6 marks)
3	(b) $\frac{x^{5}+6 \sqrt{x}}{2 x^{2}}=\frac{x^{5}}{2 x^{2}}+6 \frac{\sqrt{x}}{2 x^{2}},=\frac{1}{2} x^{3}+3 x^{-\frac{3}{2}}$ Attempts to differentiate $x^{-\frac{3}{2}}$ to give $k x^{-\frac{5}{2}}$ $=\frac{3}{2} x^{2}-\frac{9}{2} x^{-\frac{5}{2}} \text { o.e. }$	M1 A1 M1 A1 (4 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
4(a)	$y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3$ $\left\{\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right\} 5(3) x^{2}-6\left(\frac{4}{3}\right) x^{\frac{1}{3}}+2$ $=15 x^{2}-8 x^{\frac{1}{3}}+2$	M1
4(b)	$\left\{\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right\} 30 x-\frac{8}{3} x^{-\frac{2}{3}}$	A1 A1 A1

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
5(a)	($h=$) $\frac{60}{\pi x^{2}}$ or equivalent exact (not decimal) expression e.g. ($h=$)60 $\div \pi x^{2}$	B1
5(b)	($A=$) $2 \pi x^{2}+2 \pi x h \quad$ or $(A=) 2 \pi r^{2}+2 \pi r h \quad$ or $(A=) 2 \pi r^{2}+\pi d h$ may not be simplified and may appear on separate lines Either $\quad(A)=2 \pi x^{2}+2 \pi x\left(\frac{60}{\pi x^{2}}\right)$ or As $\pi x h=\frac{60}{x}$ then $(A=) 2 \pi x^{2}+2\left(\frac{60}{x}\right)$ $A=2 \pi x^{2}+\left(\frac{120}{x}\right)$	B1 M1 A1 cso
5(c)	$\begin{aligned} \left(\frac{\mathrm{d} A}{\mathrm{~d} x}\right) & =4 \pi x-\frac{120}{x^{2}} \quad \text { or }=4 \pi x-120 x^{-2} \\ 4 \pi x & -\frac{120}{x^{2}}=0 \text { implies } x^{3}=\quad \text { (Use of }>0 \text { or }<0 \text { is MO then MOAO) } \\ x & =\sqrt[3]{\frac{120}{4 \pi}} \text { or answers which round to } 2.12 \quad(-2.12 \text { is AO) } \end{aligned}$	M1 A1 M1 dM1 A1
5(d)	$A=2 \pi(2.12)^{2}+\frac{120}{2.12},=85 \quad$ (only ft $x=2$ or $2.1-$ both give 85)	M1 A1 (2)
5(e)	Either $\quad \frac{d^{2} A}{d x^{2}}=4 \pi+\frac{240}{x^{3}}$ and sign considered (May appear in (c)) which is >0 and therefore minimum (most substitute 2.12 but it is not essential to see a substitution) (may appear in (c)) Or (method 2) considers gradient to left and right of their 2.12 (e.g. at 2 and 2.5) Or (method 3) considers value of A either side Finds numerical values for gradients and observes gradients go from negative to zero to positive so concludes minimum OR finds numerical values of A, observing greater than minimum value and draws conclusion	M1 A1 (2)
		(13 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
6(a)	Either: (Cost of polishing top and bottom (two circles) is) $3 \times 2 \pi r^{2}$ or (Cost of polishing curved surface area is) $2 \times 2 \pi r h$ or both $-j u s t$ need to see at least one of these products Uses volume to give ($h=$) $\frac{75 \pi}{\pi r^{2}}$ or ($h=$) $\frac{75}{r^{2}}$ (simplified) (if V is misread - see below) $\begin{array}{lll} (C)=6 \pi r^{2}+4 \pi r\left(\frac{75}{r^{2}}\right) & \begin{array}{l} \text { Substitutes expression for } h \text { into area } \\ \text { or cost expression of form } A r^{2}+B r h \end{array} \\ C=6 \pi r^{2}+\frac{300 \pi}{r} & * & \end{array}$	B1 B1ft M1 A1* (4)
6(b)	$\left\{\frac{\mathrm{d} C}{\mathrm{~d} r}=\right\} 12 \pi r-\frac{300 \pi}{r^{2}}$ or $12 \pi r-300 \pi r^{-2}$ (then isw). $12 \pi r-\frac{300 \pi}{r^{2}}=0$ so $r^{k}=$ value where $k= \pm 2, \pm 3, \pm 4$ Use cube root to obtain $r=$ their $\left(\frac{300}{12}\right)^{\frac{1}{3}}(=2.92)$ allow $r=3$, and thus $C=$ Then $C=$ awrt 483 or 484	M1 A1 ft dM1 ddM1 A1cao
6(c)	$\left\{\frac{\mathrm{d}^{2} C}{\mathrm{~d} r^{2}}=\right\} 12 \pi+\frac{600 \pi}{r^{3}}>0$ so minimum	
		(10 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
7(a)	$\begin{aligned} & k r^{2}+c x y=4 & \text { or } \quad k r^{2}+c\left[(x+y)^{2}-x^{2}-y^{2}\right]=4 \\ & \frac{1}{4} \pi x^{2}+2 x y=4 & \\ y= & \frac{4-\frac{1}{4} \pi x^{2}}{2 x}=\frac{16-\pi x^{2}}{8 x} & * \end{aligned}$	$\begin{gather*} \text { M1 } \tag{3}\\ \text { A1 } \\ \text { B1 cso } \\ \quad \text { (3) } \end{gather*}$
7(b)	$\begin{aligned} & P=2 x+c y+k \pi r \text { where } c=2 \text { or } 4 \text { and } k=1 / 4 \text { or } 1 / 2 \\ & P=\frac{\pi x}{2}+2 x+4\left(\frac{4-\frac{1}{4} \pi x^{2}}{2 x}\right) \text { or } P=\frac{\pi x}{2}+2 x+4\left(\frac{16-\pi x^{2}}{8 x}\right) \text { o.e. } \\ & P=\frac{\pi x}{2}+2 x+\frac{8}{x}-\frac{\pi x}{2} \quad \text { so } P=\frac{8}{x}+2 x \quad * \end{aligned}$	M1 A1 A1 (3)
7(c)	$\begin{aligned} & \left(\frac{\mathrm{d} P}{\mathrm{~d} x}=\right)-\frac{8}{x^{2}}+2 \\ & -\frac{8}{x^{2}}+2=0 \Rightarrow x^{2}=. . \\ & \text { and so } x=2 \text { o.e. } \quad \text { (ignore extra answer } x=-2 \text {) } \\ & P=4+4=8(\mathrm{~m}) \quad \end{aligned}$	M1 A1 M1 A1 B1 (5)
7(d)	$y=\frac{4-\pi}{4},(\text { and so width })=21(\mathrm{~cm})$	M1 A1 (2)
		(13 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
9(a)	$\begin{aligned} & V=4 x(5-x)^{2} \\ & \text { So, } V=100 x-4 x^{2}+4 x^{3} \\ & \frac{\mathrm{~d} V}{\mathrm{~d} x}=100-80 x+12 x^{2} \end{aligned}$ $\begin{array}{r} \pm \alpha x \pm b x^{2} \pm \gamma x^{3}, \alpha, b, \gamma \neq 0 \\ V=100 x-4 x^{2}+4 x^{3} \end{array}$ At least two of their expanded terms differentiated correctly $100-80 x+12 x^{2}$	M1 A1 M1 A1 cao (4)
9(b)	$\begin{aligned} & 100-80 x+12 x^{2}=0 \\ & \left\{\Rightarrow 4\left(3 x^{2}-20 x+25\right)=0 \Rightarrow 4(3 x-5)(x-5)=0\right\} \\ & \{\text { As } 0<x<5\} x=\frac{5}{3} \\ & x=\frac{5}{3}, V=4\left(\frac{5}{3}\right)\left(5-\frac{5}{3}\right)^{2} \end{aligned}$ So, $V=\frac{2000}{27}=74 \frac{2}{27}=74.074 \ldots$ Sets their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ from part (a) $=0$ $x=\frac{5}{3} \text { or } x=\text { awrt } 1.67$ Substitute candidate's value of x where $0<x<5$ into a formula for V Either $\frac{2000}{27}$ or $74 \frac{2}{27}$ or awrt 74.1	M1 A1 dM1 A1
9(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-80+24 x$ When $x=\frac{5}{3}, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}=-80+24\left(\frac{5}{3}\right)$ $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-40<0 \Rightarrow V$ ia a maximum Differentiates their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ correctly to give $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-40$ and ≤ 0 or negative and maximum	M1 A1 cso (2)
		(10 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
10(a)	$\begin{aligned} & \vartheta=20+A \mathrm{e}^{-k t}\left(\text { eqn }^{*}\right) \\ & \{t=0, \vartheta=90 \Rightarrow\} 90=20+A \mathrm{e}^{-k(0)} \\ & 90=20+A \Rightarrow A=70 \end{aligned}$ Substitutes $t=0$ and $\vartheta=90$ into eqn * $A=70$	M1 A1 (2)
10(b)	$\begin{aligned} & \vartheta=20+70 \mathrm{e}^{-k t} \\ & \{t=5, \vartheta=55 \Rightarrow\} 55=20+A \mathrm{e}^{-k(5)} \\ & \frac{35}{70}=\mathrm{e}^{-5 k} \\ & \ln \left(\frac{35}{70}\right)=-5 k \\ & -5 k=\ln \left(\frac{1}{2}\right) \\ & -5 k=\ln 1-\ln 2 \Rightarrow-5 k=-\ln 2 \Rightarrow k=\frac{1}{5} \ln 2 \end{aligned}$ Substitutes $t=5$ and $\vartheta=55$ into eqn * and rearranges eqn * to make $\mathrm{e}^{5 k}$ the subject Takes 'Ins' and proceeds to make ' $\pm 5 k$ ' the subject Convincing proof that $k=\frac{1}{5} \ln 2$	M1 dM1 A1
10(c)	$\begin{aligned} & \vartheta=20+70 \mathrm{e}^{-\frac{1}{5} t \ln 2} \\ & \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-\frac{1}{5} \ln 2 \times(70) \mathrm{e}^{-\frac{1}{5} t \ln 2} \end{aligned}$ When $t=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-14 \ln 2 \mathrm{e}^{-2 \ln 2}$ $\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-\frac{7}{2} \ln 2=-2.426015132 \ldots$ Rate of decrease of $\vartheta=2.426^{\circ} \mathrm{C} / \mathrm{min}$ (3dp.) $\pm \alpha \mathrm{e}^{-k t}$ where $k=\frac{1}{5} \ln 2$ $-14 \ln 2 e^{-\frac{1}{5} t \ln 2}$ awrt ± 2.426	M1 A1 oe A1 (3)
		(8 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

	Source paper	Question number	New spec references	Question description
1	C1 2017	2	2.2 and 7.2	Differentiation
2	C1 2016	7	2.1 and 7.2	Differentiation
3	C1 2014	7	7.2	Differentiation and related sums and
differences				

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
2(a)	 Shape (cubic in this orientation) Touching x-axis at -3 Crossing at $\mathbf{- 1}$ on x-axis Intersection at 9 on y-axis	B1 B1 B1 B1 (4)
2(b)	$y=(x+1)\left(x^{2}+6 x+9\right)=x^{3}+7 x^{2}+15 x+9$ or equiv. (possibly unsimplified) Differentiates their polynomial correctly - may be unsimplified $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15$	B1 M1 A1 cso
2(c)	At $x=-5: \frac{\mathrm{d} y}{\mathrm{~d} x}=75-70+15=20$ At $x=-5: y=-16$ $y-("-16 ")=" 20 "(x-(-5)) \quad$ or $y=" 20 x "+c$ with $(-5,-" 16 ")$ used to find c $y=20 x+84$	B1 B1 M1 A1 (4)
2(d)	$\begin{aligned} & \text { Parallel: } 3 x^{2}+14 x+15=" 20 " \\ & (3 x-1)(x+5)=0 \quad x=\ldots \\ & x=\frac{1}{3} \end{aligned}$	M1 M1 A1 (3)
		(14 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
3(a)	$\begin{aligned} & \left(x^{2}+4\right)(x-3)=x^{3}-3 x^{2}+4 x-12 \\ & \frac{x^{3}-3 x^{2}+4 x-12}{2 x}=\frac{x^{2}}{2}-\frac{3}{2} x+2-6 x^{-1} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=x-\frac{3}{2}+\frac{6}{x^{2}} \\ & \text { oe e.g. } \frac{2 x^{3}-3 x^{2}+12}{2 x^{2}} \end{aligned}$	M1 M1 A1 ddM1 A1 (5)
3(b)	$\begin{aligned} & \text { At } x=-1, y=10 \\ & \qquad\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right)-1-\frac{3}{2}+\frac{6}{1}=3.5 \\ & y-'^{\prime} 10^{\prime}==^{\prime} 3.5^{\prime}(x--1) \\ & 2 y-7 x-27=0 \end{aligned}$	B1 M1 A1 M1 A1 (5)
		(10 marks)
4(a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 6 x^{2}+2 k x+5$	M1 A1 (2)
4(b)	Gradient of given line is $\frac{17}{2}$ $\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=-2}=6(-2)^{2}+2 k(-2)+5 \\ & \prime \prime 24-4 k+5 "=" \frac{17}{2} \Rightarrow " k=\frac{41}{8} " \end{aligned}$	B1 M1 dM1 A1 (4)
4(c)	$y=-16+4 k-10+6=4 " k "-20=\frac{1}{2}$	
4(d)	$y-" \frac{1}{2} "=" \frac{17}{2} n(x-2) \Rightarrow-17 x+2 y-35=0$ or $y=" \frac{17}{2} " x+c \Rightarrow c=\ldots \Rightarrow-17 x+2 y-35=0$ or $2 y-17 x=1+34 \Rightarrow-17 x+2 y-35=0$	M1 A1 (2)
		(10 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
8(a)	Substitutes $x=2$ into $y=20-4 \times 2-\frac{18}{2}$ and gets 3 $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4+\frac{18}{x^{2}}$ Substitute $x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\frac{1}{2}\right)$ then finds negative reciprocal (-2) States or uses $y-3=-2(x-2)$ or $y=-2 x+c$ with their $(2,3)$ to deduce that $y=-2 x+7 \quad *$	B1 M1 A1 dM1 dM1 A1* (6)
8(b)	Put $20-4 x-\frac{18}{x}=-2 x+7$ and simplify to give $2 x^{2}-13 x+18=0$ Or put $y=20-4\left(\frac{7-y}{2}\right)-\frac{18}{\left(\frac{7-y}{2}\right)}$ to give $y^{2}-y-6=0$ $\begin{gathered} (2 x-9)(x-2)=0 \text { so } x=\quad \text { or }(y-3)(y+2)=0 \text { so } y= \\ x=\frac{9}{2}, y=-2 \end{gathered}$	M1A1 dM1 A1, A1
		(11 marks)

AS and A level Mathematics Practice Paper - Differentiation (part 2) - Mark scheme

Question	Scheme	Marks
9(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}+18 x-30$ Either Substitute $x=1$ to give $\frac{\mathrm{d} y}{\mathrm{~d} x}=12+18-30=0$ Or So turning point (all correct work so far) Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}+18 x-30=0$ to Deduce $x=1$ from correct work	M1 A1 A1cso (3)
9(b)	$\begin{aligned} & \text { When } x=1, y=4+9-30-8=-25 \\ & \text { Area of triangle } A B P=\frac{1}{2} \times 1 \times 25=12.5(\text { Where } P \text { is at }(1,0)) \\ & \int\left(4 x^{3}+9 x^{2}-30 x-8\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{30}{2} x^{2}-8 c\{+c\} \\ & \text { or } x^{4}+3 x^{3}-15 x^{2}-8 c\{+c\} \\ & {\left[x^{4}+3 x^{3}-15 x^{2}-8 c\right]_{-\frac{1}{4}}^{1}=} \\ & (1+3-15-8)-\left(\left(-\frac{1}{4}\right)^{4}+3\left(-\frac{1}{4}\right)^{3}-15\left(-\frac{1}{4}\right)^{2}-8\left(-\frac{1}{4}\right)\right)= \\ & (-19)-\frac{261}{256} \text { or }-19-1.02 \\ & \text { So Area }=\text { "their } 12.5 \text { " + "their } \frac{5}{256} \text { " or or " } 12.5 \text { " + " } 20.02 \text { " } \\ & \text { or " } 12.5^{\prime \prime}+\text { "their } \frac{5125}{256} \text { " } \\ & =32.52 \text { (NOT }-32.52) \end{aligned}$	B1 B1 M1A1 dM1 ddM1 A1
		(10 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C1 Jan 2012	8	$7.2,2.7$ and 2.9	Differentiation, graphs and their transformations
2	C1 2011	10	$2.7,7.2$ and 7.3	Differentiation, graphs and their transformations
3	C1 2015	6	7.2 and 7.3	Differentiation, calculation of equation of tangent
4	C1 2016	11	$3.1,7.2$ and 7.3	Parallel lines, tangent to curve
5	C1 Jan 2013	11	$3.1,7.1,7.2$ and 7.3	Differentiation, straight lines
6	C1 Jan 2011	11	$3.1,7.2,7.3$	Differentiation, straight lines
7	C1 Jan 2012	10	$7.2,7.3,2.4,2.6$	Differentiation, quadratics, graphs and their transf
8	C1 June 2014R	11	$7.2,7.3,2.4$	Equation of normal, intersection of graphs
9	C2 2017	10	$7.2,7.3,8.2$ and 8.3	Differentiation and turning point, definite integrati

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
1	$\begin{gathered} 2 \log x=\log x^{2} \\ \log _{3} x^{2}-\log _{3}(x-2)=\log _{3} \frac{x^{2}}{x-2} \\ \frac{x^{2}}{x-2}=9 \end{gathered}$ Solves $x^{2}-9 x+18=0 \quad$ to give $x=\ldots .$. $x=3, x=6$	B1 M1 A1 o.e. M1 A1
		(5 marks)
2(a)	$\log _{3} 3 x^{2}=\log _{3} 3+\log _{3} x^{2}$ or $\log y-\log x^{2}=\log 3$ or $\log y-\log 3=\log x^{2}$ $\log _{3} x^{2}=2 \log _{3} x$ Using $\log _{3} 3=1$	B1 B1 B1 (3)
2(b)	$3 x^{2}=28 x-9$ Solves $3 x^{2}-28 x+9=0 \quad$ to give $x=\frac{1}{3}$ or $x=9$	M1 M1 A1 (3)
		(6 marks)
3(a)	$\begin{array}{ll} 2 \log (x+15)=\log (x+15)^{2} & \\ \log (x+15)^{2}-\log x=\log \frac{(x+15)^{2}}{x} & \text { Correct use of } \log a-\log b=\log \frac{a}{b} \\ 2^{6}=64 \text { or } \log _{2} 64=6 & 64 \text { used in the correct context } \\ \log _{2} \frac{(x+15)^{2}}{x}=6 \Rightarrow \frac{(x+15)^{2}}{x}=64 & \text { Removes logs correctly } \\ \Rightarrow x^{2}+30 x+225=64 x & \text { Must see expansion of }(x+15)^{2} \text { to } \\ \text { or } x+30+225 x^{-1}=64 & \text { score the final mark. } \\ \therefore x^{2}-34 x+225=0 * & \end{array}$	B1 M1 B1 M1 A1
3(b)	$(x-25)(x-9)=0 \Rightarrow x=25 \text { or } x=9$ M1: Correct attempt to solve the given quadratic as far as $x=$... A1: Both 25 and 9	M1 A1 (2)
		(7 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
4(i)	$\begin{aligned} & \log _{2}\left(\frac{2 x}{5 x+4}\right)=-3 \text { or } \log _{2}\left(\frac{5 x+4}{2 x}\right)=3 \text {, or } \log _{2}\left(\frac{5 x+4}{x}\right)=4 \text { (see special } \\ & \text { case } 2 \text {) } \\ & \left(\frac{2 x}{5 x+4}\right)=2^{-3} \text { or }\left(\frac{5 x+4}{2 x}\right)=2^{3} \text { or }\left(\frac{5 x+4}{x}\right)=2^{4} \text { or } \\ & \left(\log _{2}\left(\frac{2 x}{5 x+4}\right)\right)=\log _{2}\left(\frac{1}{8}\right) \\ & 16 x=5 x+4 \Rightarrow x=\text { (depends on previous Ms and must be this equation or } \\ & \text { equivalent) } \\ & \quad x=\frac{4}{11} \text { or exact recurring decimal } 0.36 \text { after correct work } \end{aligned}$	M1 M1 dM1 A1 cso
4(ii)	$\begin{aligned} & \log _{a} y+\log _{a} 2^{3}=5 \\ & \log _{a} 8 y=5 \\ & y=\frac{1}{8} a^{5} \end{aligned}$ Applies product law of logarithms. $y=\frac{1}{8} a^{5}$	M1 dM1 A1cao (3)
		(7 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
5(i)	Use of power rule so $\log (x+a)^{2}=\log 16 a^{6}$ or $2 \log (x+a)=2 \log 4 a^{3}$ or $\log (x+a)=\log \left(16 a^{6}\right)^{\frac{1}{2}}$ Removes logs and square roots, or halves then removes logs to give $(x+a)=4 a^{3}$ Or $x^{2}+2 a x+a^{2}-16 a^{6}=0$ followed by factorisation or formula to give $x=\sqrt{16 a^{6}}-a$ ($x=$) $4 a^{3}-a$ (depends on previous M's and must be this expression or equivalent)	M1 A1cao
5(ii)	Way 1 $\begin{aligned} & \log _{3} \frac{(9 y+b)}{(2 y-b)}=2 \\ & \frac{(9 y+b)}{(2 y-b)}=3^{2} \\ & (9 y+b)=9(2 y-b) \Rightarrow y= \\ & \quad y=\frac{10}{9} b \end{aligned}$ Applies quotient law of logarithms Uses $\log _{3} 3^{2}=2$ Multiplies across and makes y the subject	M1 M1 M1 A1cso
	Way 2 $\begin{array}{lr} \log _{3}(9 y+b)=\log _{3} 9+\log _{3}(2 y-b) & 2^{\text {nd }} \mathrm{M} \text { mark } \\ \log _{3}(9 y+b)=\log _{3} 9(2 y-b) & 1^{\text {st } M \text { mark }} \\ (9 y+b)=9(2 y-b) \Rightarrow y=\frac{10}{9} b & \end{array}$ Multiplies across and makes y the subject	M1 M1 M1 A1cso (4)
		(7 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
6(a)	$\begin{aligned} & 5^{x}=10 \text { and }(b) \log _{3}(x-2)=-1 \\ & x=\frac{\log 10}{\log 5} \text { or } x=\log _{5} 10 \\ & x\{=1.430676558 \ldots\}=1.43 \text { (3 sf) } \end{aligned}$	M1 A1 cao (2)
6(b)	$\begin{array}{lr} (x-2)=3^{-1} & (x-2)=3^{-1} \text { or } \frac{1}{3} \\ x\left\{=\frac{1}{3}+2\right\}=2 \frac{1}{3} & 2 \frac{1}{3} \text { or } \frac{7}{3} \text { or } 2 . \dot{3} \text { or awrt } 2.33 \end{array}$	M1 oe A1 (2)
		(4 marks)
7(a)	$\begin{aligned} \mathrm{e}^{3 x-9}=8 & \Rightarrow 3 x-9=\ln 8 \\ & \Rightarrow x=\frac{\ln 8+9}{3},=\ln 2+3 \end{aligned}$	M1 A1 A1
		(3 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
8(a)	Attempt $\mathrm{f}(3)$ or $\mathrm{f}(-3)$ Use of long division is MOAO as factor theorem was required. $\mathrm{f}(-3)=162-63-120+21=0 \quad$ so $(x+3)$ is a factor	M1 A1 (2)
8(b)	Either (Way 1) $\begin{aligned} & \mathrm{f}(x)=(x+3)\left(-6 x^{2}+11 x+7\right) \\ & =(x+3)(-3 x+7)(2 x+1) \text { or }-(x+3)(3 x-7)(2 x+1) \end{aligned}$ Or (Way 2) Uses trial or factor theorem to obtain $x=-1 / 2$ or $x=7 / 3$ Uses trial or factor theorem to obtain both $x=-1 / 2$ and $x=7 / 3$ Puts three factors together (see notes below) Correct factorisation: $(x+3)(7-3 x)(2 x+1)$ or $-(x+3)(3 x-7)(2 x+1)$ oe Or (Way 3) No working three factors $(x+3)(-3 x+7)(2 x+1)$ otherwise need working	M1 A1 M1 A1 (4) M1 A1 M1 A1 M1 A1 M1 A1 (4)
8(c)	$\begin{aligned} & 2^{y}=\frac{7}{3}, \rightarrow \log \left(2^{y}\right)=\log \left(\frac{7}{3}\right) \text { or } y=\log _{2}\left(\frac{7}{3}\right) \text { or } \frac{\log (7 / 3)}{\log 2} \\ & \{y=1.222392421 \ldots\} \Rightarrow y=\text { awrt } 1.22 \end{aligned}$	
		(9 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
9(i)	$\begin{array}{ll} 8^{2 x+1}=24 & \\ (2 x+1) \log 8=\log 24 & \text { or } 8^{2 x}=3 \text { and so }(2 x) \log 8=\log 3 \\ \text { or }(2 x+1)=\log _{8} 24 & \text { or }(2 x)=\log _{8} 3 \\ x=\frac{1}{2}\left(\frac{\log 24}{\log 8}-1\right) & x=\frac{1}{2}\left(\frac{\log 3}{\log 8}\right) \text { or } x=\frac{1}{2}\left(\log _{8} 3\right) \text { o.e. } \\ \text { or } x=\frac{1}{2}\left(\log _{8} 24-1\right) & \\ =0.264 & \end{array}$	M1 dM1 A1 (3)
9(ii)	$\begin{aligned} & \log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1 \\ & \log _{2} \frac{(11 y-3)}{3 y^{2}}=1 \quad \text { or } \quad \log _{2} \frac{(11 y-3)}{y^{2}}=1+\log _{2} 3=2.58496501 \\ & \log _{2} \frac{(11 y-3)}{3 y^{2}}=\log _{2} 2 \text { or } \log _{2} \frac{(11 y-3)}{y^{2}}=\log _{2} 6 \end{aligned}$ (allow awrt 6 if replaced by 6 later) Obtains $6 y^{2}-11 y+3=0$ o.e. i.e. $6 y^{2}=11 y-3$ for example Solves quadratic to give $y=$ $y=\frac{1}{3}$ and $\frac{3}{2}$ (need both- one should not be rejected)	M1 dM1 B1 A1 ddM1 A1 (6)
		(9 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
10(i)	$\begin{gathered} \log _{3}\left(\frac{3 b+1}{a-2}\right)=-1 \quad \text { or } \log _{3}\left(\frac{a-2}{3 b+1}\right)=1 \\ \frac{3 b+1}{a-2}=3^{-1}\left\{=\frac{1}{3}\right\} \quad \text { or } \quad\left(\frac{a-2}{3 b+1}\right)=3 \\ \{9 b+3=a-2 \Rightarrow\} b=\frac{1}{9} a-\frac{5}{9} \end{gathered}$	M1 M1 A1 oe (3)
10(ii)	$32\left(2^{2 x}\right)-7\left(2^{x}\right)=0$ So, $\quad 2^{x}=\frac{7}{32}$ $\begin{aligned} & x \log 2=\log \left(\frac{7}{32}\right) \text { or } x=\frac{\log \left(\frac{7}{32}\right)}{\log 2} \text { or } x=\log _{2}\left(\frac{7}{32}\right) \\ & x=-2.192645 \ldots \end{aligned}$	M1 A1 oe dM1 A1 (4)
		(7 marks)
11(i)	$\begin{aligned} & y \log 5=\log 8 \\ & \qquad\left\{y=\frac{\log 8}{\log 5}\right\}=1.2920 \ldots \quad \text { awrt 1.29 } \end{aligned}$	M1 A1 (2)
11(ii)	$\begin{aligned} & \log _{2}(x+15)-4=\frac{1}{2} \log _{2} x \\ & \log _{2}(x+15)-4=\log _{2} x^{\frac{1}{2}} \\ & \log _{2}\left(\frac{x+15}{x^{\frac{1}{2}}}\right)=4 \\ & \left(\frac{x+15}{x^{\frac{1}{2}}}\right)=2^{4} \\ & x-16 x^{\frac{1}{2}}+15=0 \\ & \quad \text { or e.g. } \\ & x^{2}+225=226 x \\ & (\sqrt{x}-1)(\sqrt{x}-15)=0 \Rightarrow \sqrt{x}=\ldots \end{aligned}$	M1 M1 M1 A1 dddM1
	$\begin{aligned} & \{\sqrt{x}=1,15\} \\ & x=1,225 \end{aligned}$	

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

Question	Scheme	Marks
		(8 marks)

AS and A level Mathematics Practice Paper - Exponentials and logarithms Mark scheme

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C2 2012	2	$6.3,6.4$ and 2.3	Laws of logarithms
2	C2 Jan 2012	Q4	6.3 and 6.4	Laws of logarithms
3	C2 Jan 2013	Q6	6.3 and 6.4	Laws of logarithms
4	C2 2013	7	$6.3,6.4$	Laws of logarithms
5	C2 2017	7	6.3 and 6.4	Laws of logs
6	C2 2011	Q3	6.3 and 6.5	Exponentials and logarithms
7	C3 2017	2	$6.3,6.4$	Exponential equation
8	C2 2017	6	2.6 and 6.5	Factor theorem and factorisation of cubic, a^{x} a
9	C2 2015	7	$6.3,6.4$ and 6.5	Exponentials and logarithms
10	C2 2016	8	$2.3,6.3,6.4,6.5$	Exponentials and logarithms
11	C2 June 2014R	8	$6.4,6.5$	Exponentials and logarithms
12	C2 2014	8	$6.1,6.3$ and 6.5 and 2.3	Exponentials and logarithms

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
1(a)	(a) -1 accept ($-1,0$)	
1(b)		B1 B1 B1 (3)
1(c)	(c) 2 solutions as curves cross twice	$\mathrm{B} 1 \mathrm{ft}$ (1)
		(5 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
3(a)	 Correct shape with a single crossing of each axis $y=1$ labelled or stated $x=3$ labelled or stated	B1 B1 B1 (3)
3(b)	Horizontal translation so crosses the x-axis at $(1,0)$ New equation is $(y=) \frac{x \pm 1}{(x \pm 1)-2}$ When $x=0 y=$ $=\frac{1}{3}$	B1 M1 M1 A1 (4)
		(7 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
		(12 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
		$(6$ marks $)$

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
8(a)(i)		B1 B1 (2)
8(a)(ii)		B1 B1 (2)
8(b)	$\begin{aligned} & \frac{1}{x}+5=-3 x+c \Rightarrow 1+5 x=-3 x^{2}+c x \\ & \quad \Rightarrow 3 x^{2}+5 x-c x+1=0 \\ & b^{2}-4 a c=(5-c)^{2}-4 \times 1 \times 3 \\ & (5-c)^{2}>12 * \end{aligned}$	M1 M1 A1* (3)
8(c)	$(5-c)^{2}=12 \Rightarrow(c=) 5 \pm \sqrt{12}$ or $\begin{aligned} & (5-c)^{2}=12 \Rightarrow c^{2}-10 c+13=0 \\ & \Rightarrow(c=) \frac{-10 \pm \sqrt{(-10)^{2}-4 \times 13}}{2} \\ & c<" 5-\sqrt{12} ", c>" 5+\sqrt{12} " \end{aligned}$	M1A1 M1

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
	$0<c<5-\sqrt{12}, c>5+\sqrt{12}$	A1
		(4)
		(11 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
9(a)	This may be done by completion of square or by expansion and comparing coefficients $\begin{aligned} & a=4 \\ & b=1 \end{aligned}$ All three of $a=4, b=1$ and $c=-1$	B1 B1 B1 (3)
9(b)	 U shaped quadratic graph. The curve is correctly positioned with the minimum in the third quadrant. . It crosses x axis twice on negative x axis and y axis once on positive y axis. Curve cuts y-axis at $(\{0\}, 3)$. only Curve cuts x-axis at $\left(-\frac{3}{2},\{0\}\right) \text { and }\left(-\frac{1}{2},\{0\}\right)$	M1 A1 B1 B1
		(7 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme		Marks
10(a)	\{Coordinates of A are ($4.5,0)$		B1
10(b)(i)	 Horizontal translation -3 and their ft 1.5 on postitive x-axis Maximum at 27 marked on the y-axis		M1 A1 ft B1
10(b)(ii)		Correct shape, minimum at $(0,0)$ and a maximum within the first quadrant. 1.5 on x-axis Maximum at $(1,27)$	M1 A1 ft B1
10(c)	$\{k=\}-17$		B1
			(1)
			(8 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
11(a)(i)	$k=(-5)^{2} \times 3=75$	M1A1
11(a)(ii)	$c=\frac{5}{2} \text { only }$	B1 (3)
11(b)	$\begin{aligned} & \mathrm{f}(x)=(2 x-5)^{2}(x+3)=\left(4 x^{2}-20 x+25\right)(x+3)=4 x^{3}-8 x^{2}-35 x+75 \\ & \left(\mathrm{f}^{\prime}(x)=\right) 12 x^{2}-16 x-35 * \end{aligned}$	M1 M1A1* (3)
11(c)	$\begin{aligned} & \mathrm{f}^{\prime}(3)=12 \times 3^{2}-16 \times 3-35 \\ & 12 x^{2}-16 x-35=' 25^{\prime} \\ & 12 x^{2}-16 x-60=0 \\ & (x-3)(12 x+20)=0 \Rightarrow x=\ldots \\ & x=-\frac{5}{3} \end{aligned}$	M1 dM1 A1 cso ddM1 A1 cso
		(11 marks)

AS and A level Mathematics Practice Paper - Graphs and transformations Mark scheme

Question	Scheme	Marks
12(a)		
(i) (ii)	Correct shape (-ve cubic) Crossing at $(-2,0)$ Through the origin Crossing at $(3,0)$ 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1 B1
		(6)
12(b)	"2" solutions Since only " 2 " intersections	B1ft dB1ft (2)
		(8 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C1 2014	4	2.7	Graphs of functions/intersections to solv equations
2	C1 2016	4	2.9	Transformation of graphs
3	C1 Jan 2011	5	2.7 and 2.9	Graphs and their transformations
4	C1 Jan 2013	6	$2.3,2.4$ and 2.9	Simultaneous equations, Graphs and thei transformations
5	C1 2015	8	$2.6,2.7$ and 3.1	Manipulation of cubic and graph
6	C1 2011	8	2.9	Graphs and their transformations
7	C1 2013	8	$2.6,2.7$ and 2.9	Graphs, algebraic manipulation of polyno
8	C1 2017	9	$2.3,2.4,2.5,2.7$ and 2.9	Graphs, intersections and discriminant
9	C1 Jan 2013	10	2.3	Quadratics, Graphs and their transformat

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
1	$\begin{aligned} \left\{\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x\right\} & =\frac{6 x^{3}}{3}+\frac{2 x^{-1}}{-1}+5 x(+c) \\ & =2 x^{3}-2 x^{-1} ;+5 x+c \end{aligned}$	M1 A1 A1; A1
		(4 marks)
2	$\begin{aligned} & \frac{2}{5} x^{5}-\frac{4}{\frac{1}{2}} x^{\frac{1}{2}}+3 x \\ = & \frac{2}{5} x^{5}-8 x^{\frac{1}{2}}+3 x+c \end{aligned}$	M1 A1 A1 A1
		(4 marks)
3	$\begin{aligned} & \int\left(2 x^{5}-\frac{1}{4} x^{-3}-5\right) \mathrm{d} x \\ & x^{n} \rightarrow x^{n+1} \\ & 2 \times \frac{x^{5+1}}{6} \text { or }-\frac{1}{4} \times \frac{x^{-3+1}}{-2} \\ & \text { Two of: } \frac{1}{3} x^{6}, \frac{1}{8} x^{-2},-5 x \\ & \frac{1}{3} x^{6}+\frac{1}{8} x^{-2}-5 x+c \end{aligned}$	M1 A1 A1 A1
		(4 marks)
4	$\begin{aligned} & \left\{\boldsymbol{\int}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)} \\ & \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(\sqrt{3})^{-1}}{-1(3)}\right)-\left(\frac{(1)^{4}}{24}+\frac{(1)^{-1}}{-1(3)}\right) \\ & =\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{1}{9} \sqrt{3} \end{aligned}$	M1A1A1 dM1 A1cso
		(5 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
5	$\begin{aligned} & \int\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x=\frac{x^{4}}{32}+\frac{x^{3}}{4}\{+c\} \\ & {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{2}=\left(\frac{16}{32}+\frac{8}{4}\right)-\left(\frac{256}{32}+\frac{(-64)}{4}\right)} \end{aligned}$ or $\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{0}=(0)-\left(\frac{(-4)^{4}}{32}+\frac{(-4)^{3}}{4}\right)$ added to $\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{0}^{2}=\left(\frac{(2)^{4}}{32}+\frac{(2)^{3}}{4}\right)-(0)$ $=\frac{21}{2} \quad \frac{21}{2} \text { or } 10.5$ $\{$ At $x=-4, y=-8+12=4$ or at $x=2, y=1+3=4\}$ Area of Rectangle $=6 \times 4=24$ or Area of Rectangles $=4 \times 4=16$ and $2 \times 4=8$ Evidence of $(4--2) \times$ their y_{-4} or $(4--2) \times$ their y_{2} or Evidence of $4 \times$ their y_{-4} and $2 \times$ their y_{2} So, area $(\mathrm{R})=24-\frac{21}{2}=\frac{27}{2}$	M1A1 dM1 A1 M1 dddM1A1
		(7 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
6	$\begin{array}{ll} \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{-\frac{1}{2}}+x \sqrt{x} & \\ & x \sqrt{x}=x^{\frac{3}{2}} \\ x^{n} & \rightarrow x^{n+1} \end{array}$ Use $x=4, y=37$ to give equation in $c, \quad 37=12 \sqrt{4}+\frac{2}{5}(\sqrt{4})^{5}+c$ $\begin{aligned} \Rightarrow c=\frac{1}{5} \quad \text { or equivalent eg. } 0.2 \\ (y)=12 x^{\frac{1}{2}}+\frac{2}{5} x^{\frac{5}{2}}+\frac{1}{5} \end{aligned}$	B1 M1 A1 A1 M1 A1 A1
		(7 marks)
7	$[\mathrm{f}(x)=] \frac{3 x^{3}}{3}-\frac{3 x^{2}}{2}+5 x[+c] \quad$ or $\left\{x^{3}-\frac{3}{2} x^{2}+5 x(+c)\right\}$	M1A1
	$10=8-6+10+c$	M1
	$c=-2$	A1
	$\mathrm{f}(1)=1-\frac{3}{2}+5 \quad "-2 "=\frac{5}{2} \quad$ (o.e.)	A1ft
		(5 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
8(a)	$\begin{aligned} \mathrm{f}(x)= & \int\left(\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1\right) \mathrm{d} x \\ & x^{n} \rightarrow x^{n+1} \Rightarrow \mathrm{f}(x)=\frac{3}{8} \times \frac{x^{3}}{3}-10 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+x(+c) \end{aligned}$ Substitute $x=4, y=25 \Rightarrow 25=8-40+4+c \Rightarrow c=$ $(\mathrm{f}(x))=\frac{x^{3}}{8}-20 x^{\frac{1}{2}}+x+53$	M1, A1, A1 M1 A1
8(b)	Sub $x=4$ into $\mathrm{f}^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1$ $\begin{aligned} & \Rightarrow \mathrm{f}^{\prime}(4)=\frac{3}{8} \times 4^{2}-10 \times 4^{-\frac{1}{2}}+1 \\ & \Rightarrow \mathrm{f}^{\prime}(4)=2 \end{aligned}$ Gradient of tangent $=2 \Rightarrow$ Gradient of normal is $-1 / 2$ Substitute $x=4, y=25$ into line equation with their changed gradient e.g. $y-25=-\frac{1}{2}(x-4)$ $\pm k(2 y+x-54)=0 \quad$ o.e. (but must have integer coefficients)	M1 A1 dM1 dM1 A1cso
		(10 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
9(a)	$\begin{aligned} & \mathrm{f}^{\prime}(4)=30+\frac{6-5 \times 4^{2}}{\sqrt{4}} \\ & \mathrm{f}^{\prime}(4)=-7 \\ & y-(-8)="-7 " \times(x-4) \end{aligned}$ or $\begin{gathered} y="-7 " x+c \Rightarrow-8=-7 " \times 4+c \\ \Rightarrow c=\ldots \\ y=-7 x+20 \end{gathered}$	M1 A1 M1 A1 (4)
9(b)	Allow the marks in (b) to score in (a) i.e. mark (a) and (b) together $\begin{aligned} & \Rightarrow \mathrm{f}(x)=30 x+6 \frac{x^{\frac{1}{2}}}{0.5}-5 \frac{x^{\frac{5}{2}}}{2.5}(+c) \\ & x=4, \mathrm{f}(x)=-8 \Rightarrow \\ & -8=120+24-64+c \Rightarrow c=\ldots \\ & \Rightarrow(\mathrm{f}(x)=) 30 x+12 x^{\frac{1}{2}}-2 x^{\frac{5}{2}}-88 \end{aligned}$	M1A1A1 M1 A1 (5)
		(9 marks)
10(a)	$\begin{aligned} & \mathrm{f}(x)=x^{\frac{3}{2}}-\frac{9}{2} x^{\frac{1}{2}}+2 x(+c) \\ & \text { Sub } x=4, y=9 \text { into } \mathrm{f}(x) \Rightarrow c=\ldots \\ & (\mathrm{f}(x)=) x^{\frac{3}{2}}-\frac{9}{2} x^{\frac{1}{2}}+2 x+2 \end{aligned}$	M1 A1 A1 M1 A1 (5)
10(b)	Gradient of normal is $-\frac{1}{2} \Rightarrow$ Gradient of tangent $=+2$ $\begin{aligned} & \frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}+2=2 \Rightarrow \frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}=0 \\ & \times 4 \sqrt{x} \Rightarrow 6 x-9=0 \Rightarrow x=. \\ & x=1.5 \end{aligned}$	M1 A1 M1 M1 A1 (5)
		(10 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
12(a)	May mark (a) and (b) together Expands to give $10 x^{\frac{3}{2}}-20 x$ Integrates to give $\frac{10}{" \frac{5}{2} "} x^{\text {"5 }}{ }^{\frac{2}{2}}+\frac{-" 20 " x^{2}}{2}(+c)$ Simplifies to $4 x^{\frac{5}{2}}-10 x^{2}(+c)$	$\begin{gathered} \mathrm{B} 1 \\ {\left[\begin{array}{c} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{ft} \\ \text { A1cao } \\ \\ \end{array}\right. \text { (4) }} \end{gathered}$
12(b)	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted) Use limits 4 and 9 either way round on their integrated function Obtains either ±-32 or ± 194 needs at least one of the previous M marks for this to be awarded $\text { (So area }=\left\|\int_{0}^{4} y d x\right\|+\int_{4}^{9} y d x \text {) i.e. } 32+194,=226$	$L_{\text {M1 }}^{\mathrm{M} 1}$ A1 ddM1 A1
		(9 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
13(a)	Seeing -4 and 2.	B1 (1)
13(b)	$\begin{aligned} & x(x+4)(x-2)=\frac{x^{3}+2 x^{2}-8 x}{x^{2}-8 x} \text { (without simplifying) } \\ & \quad \text { or } \frac{x^{3}-2 x^{2}+4 x^{2}}{\int\left(x^{3}+2 x^{2}-8 x\right) \mathrm{d} x=\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\{+c\}} \\ & \text { or } \frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\{+c\} \\ & {\left[\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\right]_{-4}^{0}=(0)-\left(64-\frac{128}{3}-64\right) \text { or }} \\ & {\left[\frac{x^{4}}{4}+\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}\right]_{0}^{2}=\left(4+\frac{16}{3}-16\right)-(0)} \end{aligned}$ One integral $= \pm 42 \frac{2}{3}$ (42.6 or awrt 42.7) or other integral $= \pm 6 \frac{2}{3}$ (6.6 or awrt 6.7) Hence Area $=$ "their $42 \frac{2}{3}$ " + "their $6 \frac{2}{3}$ " or \quad Area $=$ "their $42 \frac{2}{3}$ " - " - their $6 \frac{2}{3}$ " $=49 \frac{1}{3}$ or 49.3 or $\frac{148}{3} \quad\left(\right.$ NOT $-\frac{148}{3}$) (An answer of $=49 \frac{1}{3}$ may not get the final two marks - check solution carefully)	B1 M1A1ft dM1 A1 dM1 A1
		(8 marks)

AS and A level Mathematics Practice Paper - Integration - Mark scheme

Question	Scheme	Marks
14(a)	$\left\{\int\left(3 x-x^{\frac{3}{2}}\right) \mathrm{d} x\right\}=\frac{3 x^{2}}{2}-\frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)}\{+c\}$	$\text { [l} \begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$
14(b)	$\begin{aligned} & 0=3 x-x^{\frac{3}{2}} \Rightarrow 0=3-x^{\frac{1}{2}} \text { or } 0=x\left(3-x^{\frac{1}{2}}\right) \Rightarrow x=\ldots \\ & \left\{\operatorname{Area}(S)=\left[\frac{3 x^{2}}{2}-\frac{2}{5} x^{\frac{5}{2}}\right]_{0}^{9}\right\} \\ & =\left(\frac{3(9)^{2}}{2}-\left(\frac{2}{5}\right)(9)^{\frac{5}{2}}\right)-\{0\} \\ & \left\{=\left(\frac{243}{2}-\frac{486}{5}\right)-\{0\}\right\}=\frac{243}{10} \text { or } 24.3 \end{aligned}$	$\underbrace{}_{d d M 1}$ A1 oe
		(6 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C1 2012	1	8.1 and 8.2	Integration
2	C1 2016	1	8.2 and note to 8.1	Integration
3	C1 2017	1	8.2	Integration
4	C2 2014	4	8.2 and 8.3	Integration
5	C2 June 2014R	6	8.3	Integration
6	C1 June 2014R	8	$8.1,8.2$ and 8.3	Integration
7	C1 Jan 2012	7	8.1 and 8.2	Integration
8	C1 2014	10	$7.3,8.1$ and 8.2	Integration, application of differentiation
9	C1 2017	7	$2.1,3.1,7.1,7.3,8.1,8.2$	Integration, tangent
10	C1 2015	10	$7.3,8.1,8.2$	Integration, tangent/normal problem
11	C2 2012	5	$2.4,8.2$ and 8.3	Integration
12	C2 2015	6	8.2 and 8.3	Integration
13	C2 2013	6	8.2 and 8.3	Integration
14	C2 2016	7	8.2 and 8.3	Integration, areas

Question	Scheme	Marks
1	$\begin{array}{ll} \cos ^{-1}(-0.4)=113.58(\alpha) & \text { Awrt 114 } \\ 3 x-10=\alpha \Rightarrow x=\frac{\alpha+10}{3} & \text { Uses their } \alpha \text { to find } x . \\ x=41.2 & \text { Allow } x=\frac{\alpha \pm 10}{3} \text { not } \frac{\alpha}{3} \pm 10 \\ (3 x-10=) 360-\alpha(246.4 \ldots .) & 360-\alpha \text { (can be implied by 246.4...) } \\ x=85.5 & \\ (3 x-10=) 360+\alpha(=473.57 \ldots .) & 360+\alpha \text { (Can be implied by 473.57...) } \\ x=161.2 & \end{array}$	B1 M1 A1 M1 A1 M1 A1
		(7 marks)
2(a)	Way 1 $1-\sin ^{2} x=8 \sin ^{2} x-6 \sin x$ E.g. $9 \sin ^{2} x-6 \sin x=1$ or $9 \sin ^{2} x-6 \sin x-1=0 \text { or }$ $9 \sin ^{2} x-6 \sin x+1=2$ So $9 \sin ^{2} x-6 \sin x+1=2$ or $(3 \sin x-1)^{2}-2=0$ so $(3 \sin x-1)^{2}=2$ or $2=(3 \sin x-1)^{2} *$ Way 2 $2=(3 \sin x-1)^{2}$ gives $9 \sin ^{2} x-6 \sin x+1=2$ so $\sin ^{2} x+8 \sin ^{2} x-6 \sin x+1=2$ x so $8 \sin ^{2} x-6 \sin x=1-\sin ^{2} x$	B1 M1 A1cso*
2(b)	Way 1: $(3 \sin x-1)=(\pm) \sqrt{2} \quad \begin{aligned} & \text { Way 2: Expands }(3 \sin x-1)^{2}=2 \text { and } \\ & \text { uses quadratic formula on 3TQ }\end{aligned}$ uses quadratic formula on 3TQ $\begin{aligned} & \sin x=\frac{1 \pm \sqrt{2}}{3} \text { or awrt } 0.8047 \text { and awrt }-0.1381 \\ & x=53.58,126.42 \text { (or } 126.41 \text {), } 352.06,187.94 \end{aligned}$	M1 A1 dM1A1 A1 (5)

AS and A level Mathematics Practice Paper - Trigonometry - Mark scheme

Question	Scheme	Marks
		(8 marks)

AS and A level Mathematics Practice Paper - Trigonometry - Mark scheme

Question	Scheme	Marks
3(a)	States or uses $\tan 2 x=\frac{\sin 2 x}{\cos 2 x}$ $\frac{\sin 2 x}{\cos 2 x}=5 \sin 2 x \Rightarrow \sin 2 x-5 \sin 2 x \cos 2 x=0 \Rightarrow \sin 2 x(1-5 \cos 2 x)=0$	
3(b)	$\begin{aligned} & \begin{array}{ll} \sin 2 x=0 \text { gives } 2 x=0,180,360 \text { so } x= & \text { B1 for two correct answers, second } \\ 0,90,180 & \text { B1 for all three correct. Excess in } \\ \text { range }- \text { lose last B1 } \end{array} \\ & \cos 2 x=\frac{1}{5} \text { gives } 2 x=78.46 \text { (or } 78.5 \text { or } 78.4 \text {) or } 2 x=281.54 \text { (or 281.6) } \\ & x=39.2 \text { (or } 39.3 \text {), } 140.8 \text { (or 141) } \end{aligned}$	
		(7 marks)
4(a)	$\begin{aligned} & 3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4 ; 0 \leq x<360^{\circ} \\ & 3 \sin ^{2} x+7 \sin x=\left(1-\sin ^{2} x\right)-4 \\ & 4 \sin ^{2} x+7 \sin x+3=0 \text { AG } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1* cso } \end{gathered}$ (2)
4(b)	$\begin{aligned} & (4 \sin x+3)(\sin x+1)\{=0\} \\ & \sin x=\frac{3}{4}, \sin x=-1 \\ & (\|\alpha\|=48.59 \ldots) \\ & x=180+48.59 \text { or } x=360-48.59 \\ & x=228.59 \ldots \text { or } x=311.41 \ldots \\ & \{\sin x=-1\} \Rightarrow x=270 \end{aligned}$ Valid attempt at factorization and $\sin x=\ldots$ Both $\sin x=\frac{3}{4}$ and $\sin x=-1$ Either $(180+\|\alpha\|)$ or $(180-\|\alpha\|)$ Both awrt 228.6 and awrt $x=311.4$ 270	M1 A1 dM1 A1 B1 (5)
		(7 marks)

AS and A level Mathematics Practice Paper - Trigonometry - Mark scheme

Question	Scheme	Marks
5(a)	$\left.\begin{array}{l} \begin{array}{l} \text { (i) } 9 \sin \left(\theta+60^{\circ}\right)=4 ; 0 \leq \theta<360^{\circ} \\ \text { (ii) } 2 \tan x-3 \sin x=0 ;-\pi \leq x<\pi \end{array} \\ \sin \left(\theta+60^{\circ}\right)=\frac{4}{9} \text {, so }\left(\theta+60^{\circ}\right)=26.3877 \ldots \end{array}\right\} \begin{aligned} & (\alpha=26.3877 \ldots) \\ & \text { So, } \theta+60^{\circ}=\{153.6122 \ldots, 386.3877 \ldots\} \\ & \text { and } \theta=\{93.6122 \ldots, 326.3877 \ldots\} \end{aligned}$ Both answers are cso and must come from correct work	M1 M1 A1 A1 (4)
5(b)	$\begin{aligned} & 2\left(\frac{\sin x}{\cos x}\right)-3 \sin x=0 \\ & 2 \sin x-3 \sin x \cos x=0 \\ & \sin x(2-3 \cos x)=0 \\ & \cos x=\frac{2}{3} \\ & x=\operatorname{awrt}\{0.84,-0.84\} \\ & \{\sin x=0 \Rightarrow\} x=0 \text { and }-\pi \end{aligned}$	M1 A1 A1A1ft B1 (5)
		(9 marks)

AS and A level Mathematics Practice Paper - Trigonometry - Mark scheme

Question	Scheme	Marks
6(i)	$\begin{aligned} & (\|\alpha\|=56.3099 \ldots) \\ & x=\{\alpha+40=96.309993 \ldots\}=\text { awrt } 96.3 \\ & x-40^{\circ}=-180+" 56.3099^{\prime} . \ldots \quad \text { or } x-40^{\circ}=-\pi+" 0.983 " \ldots \\ & x=\{-180+56.3099 \ldots+40=-83.6901 \ldots\}=\text { awrt -83.7 } \end{aligned}$	B1 M1 A1 (3)
6(ii)(a)	$\begin{aligned} \sin \theta\left(\frac{\sin \theta}{\cos \theta}\right) & =3 \cos \theta+2 \\ \left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right) & =3 \cos \theta+2 \\ 1-\cos ^{2} \theta & =3 \cos ^{2} \theta+2 \cos \theta \quad \Rightarrow 0=4 \cos ^{2} \theta+2 \cos \theta-1^{*} \end{aligned}$	M1 dM1 A1 cso * (3)
6(ii)(b)	$\cos \theta=\frac{-2 \pm \sqrt{4-4(4)(-1)}}{8}$ or $4\left(\cos \theta \pm \frac{1}{4}\right)^{2} \pm q \pm 1=0, \quad$ or $\quad\left(2 \cos \theta \pm \frac{1}{2}\right)^{2} \pm q \pm 1=0, q \neq 0$ so $\cos \theta=\ldots$ One solution is 72° or 144°, Two solutions are 72° and 144° $\theta=\{72,144,216,288\}$	M1 A1A1 M1A1 (5)
		(11 marks)

EDEXCEL CORE MATHEMATICS C1 (6663) - MAY 2017 FINAL MARK SCHEME

	Source paper	Question number	New spec references	Question description
1	C2 Jan 2013	4	5.7	Trigonometry
2	C2 2017	8	5.3 and 5.5	Solving trig equations
3	C2 2012	6	5.5 and 5.7	Trigonometry
4	C2 Jan 2011	7	5.5 and 5.7	Trigonometry
5	C2 2014	7	5.5 and 5.7	Trigonometric equations
6	C2 2013	8	5.5 and 5.7	Trigonometric equations

